Notice to the Reader

This book has not been processed in accordance with NFPA Regulations Governing Committee Projects. Therefore, the text and commentary in it shall not be considered the official position of the NFPA or any of its committees and shall not be considered to be, nor relied upon as a formal interpretation of the meaning or intent of any specific provision or provisions of the 2014 edition of NFPA 70, National Electrical Code.¹

Publishers do not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information referenced in this work.

The reader is expressly warned to consider carefully and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions.

THE PUBLISHERS MAKE NO REPRESENTATIONS OR WARRANTIES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF FITNESS FOR PARTICULAR PURPOSE, MERCHANTABILITY OR NON-INFRINGEMENT, NOR ARE ANY SUCH REPRESENTATIONS IMPLIED WITH RESPECT TO SUCH MATERIAL. THE PUBLISHERS SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES RESULTING, IN WHOLE OR IN PART, FROM THE READER’S USES OF OR RELIANCE UPON THIS MATERIAL.

¹National Electrical Code and NEC are registered trademarks of the National Fire Protection Association, Inc., Quincy, MA 02169
Preface

One- and Two-Family Dwelling Electrical Systems has been developed for those involved in design, installation, or inspection of electrical systems in new and existing dwellings. This ninth edition covers the subject in detail and provides information relative to application of not only the 2014 National Electrical Code, but also Part VIII of the 2015 International Residential Code. Every effort has been made to update the references and material in this book to be consistent with those code editions. L. Keith Lofland was the principal contributor to this ninth edition as well as the previous two editions.

IAEI acknowledges the contributions of Joseph A. Tedesco and J. Philip Simmons in the original co-development and authoring of this publication in 1992, based on the 1990 edition of the NEC. Ed Lawry and Simmons were involved as authors and contributors in the second edition; Simmons, in the third, and fourth editions. The fifth and sixth editions were developed from contributions of Michael J. Johnston, Thomas Garvey, and L. Keith Lofland. As with any lasting and valuable publication, each edition has been improved and grown through the contributions of many dedicated individuals. IAEI intends that this publication live on as a classic textbook of residential electrical systems, with each new edition being updated and improved in each subsequent code cycle. This edition carries on these objectives and is certain to continue to be a valuable training and instructional resource about electrical installations in residential occupancies.

Who will find this publication to be a valuable asset? No doubt, the entire electrical and building inspection community—electrical contractors, electricians, foremen, estimators, plans examiners, electrical utilities and others—will appreciate this handy guidebook. This textbook should be especially valuable to combination inspectors or home inspectors who might not have the hands-on electrical experience as an installer that electrical inspectors typically possess.

Please feel free to contact IAEI with any suggestions or comments for improving One- and Two-Family Dwelling Electrical Systems, as your comments are always welcomed.
Contents

1. General Requirements 6
2. Branch-Circuit, Feeder and Service Calculations 40
3. Installations and Inspections of Services 70
4. Service Grounding and Bonding Requirements 102
5. Cabinets and Meter Socket Enclosures 137
6. Feeders and Overcurrent Protection 157
7. Personnel Protection 186
8. Power and Lighting Distribution 210
9. Outlet Devices, Pull and Junction Boxes, Conduit Bodies and Fittings 255
10. Requirements for Luminaires, Receptacles and Switches 286
11. Requirements for Appliances 319
13. Air-Conditioning Equipment Installations 356
14. Swimming Pools and Other Similar Installations 368
15. Branch Circuits and Feeders Run to Accessory Buildings 413
16. Existing Electrical Installations and Wiring 429
17. Low Voltage and Limited Energy Systems 454

Appendices

A. Cross References between the NEC 2014 and the IRC 2012 481
B. Residential Electrical Inspection Checklists 504
C. Comparison Chart of IRC and NEC Tables 531
D. Residential Inspections — Swimming Pools & Hot Tubs Checklists 533

Answers 543

Index 554
1 General Requirements
Safe electrical installations require several key components: design, listing requirements, qualified personnel, code-compliance and inspection. In fact, there are more specific requirements for one- and two-family dwellings than for any other type of occupancy referenced in the NEC. Anyone who designs, installs, or inspects electrical systems in one- and two-family dwellings must be thoroughly familiar with these requirements for safe installations, as found in electrical codes and product safety standards. These codes and standards must be followed carefully to provide an installation that is essentially free from electrical hazards. It is important that qualified persons perform the installation. A qualified person has the necessary skills, knowledge, and experience needed to ensure a safe installation. It is equally important that the installation be inspected. The inspectors are obligated to verify that applicable code rules have been followed. Knowledge of the electrical code is not an option, but a necessity in residential wiring.

This book focuses on the requirements for electrical installations based on the electrical code and includes information relative to making proper electrical inspections of residential wiring systems. The scope of this book covers one- and two-family dwelling electrical systems from the perspective of both the installer and inspector.

Structural requirements for one- and two-family dwellings are provided in the applicable building code and must be utilized in addition to the rules in the applicable electrical code. For example, NFPA-5000, *The Building Construction and Safety Code, 2015 edition*, provides structural requirements for one- and two-family dwellings and in Chapter 52 refers specifically to the National Electrical Code (NEC) for all electrical requirements (see 52.1). The 2015 *International Residential Code* includes electrical requirements in Part VIII, which is based on the provisions of the 2014 NEC. The building code generally refers to the requirements found in the NEC for all electrical requirements. One should verify which code is adopted and enforced in his or her particular area.

Electrical requirements for one-and two-family dwellings are found in the NEC-2014. There are also electrical requirements found in Part VIII of the *International Residential Code* (IRC), 2015 edition. Ten chapters in Part...
VIII of the IRC (Chapters 34–43) are dedicated to electrical code requirements, which are derived from the NEC and, for the most part, are very similar. However, there are a few differences.

The IRC is limited to coverage of the most commonly encountered wiring methods and materials in the construction of one- and two-family dwellings. IRC Section E3401.2 includes the scope and limitations of the IRC. Electrical services for one- and two-family dwellings within the scope of the IRC are limited to those rated at 120/240-volts, single-phase, and not exceeding 400 amperes. Any services beyond those ratings will fall under the requirements of the NEC. Many of the rules included in the IRC are provided in tabular form, such as applicable wiring methods, and support requirements for the applied wiring methods. Electrical systems, equipment or components that are not specifically covered in Chapters 34 through 43 of the IRC are required to comply with the applicable provisions of the National Electrical Code, NFPA 70 (see IRC E3401.2).

Most jurisdictions responsible for building safety and enforcement are adopting the NEC. Some jurisdictions are adopting the latest edition of the IRC as the governing code for one- and two-family residential dwelling electrical systems and installations. Many jurisdictions adopt the IRC without the electrical requirements (found in IRC Part VIII), and refer to the requirements of the NEC. Other jurisdictions adopt another building code and use the NEC for the electrical requirements. Consequently, the majority of electrical installations today are made in accordance with the applicable requirements of the NEC.

In an effort to be thorough in dealing with a common concern for electrical safety, this book includes information from both codes. Because the provisions of the IRC are primarily derived from the dwelling unit requirements of the NEC, the general information on what is required is the same. Therefore, the text explains the requirements generally, and refers the reader to the appropriate sec-

- The purpose of this Code is the practical safeguarding of persons and property from hazards arising from the use of electricity

- This Code is not intended as a design specification or an instruction manual for untrained persons

![Figure 1.1. Purpose of the Code](image-url)
tion of the applicable code for the specific rules. It should be emphasized once again that the electrical provisions of the IRC have been derived from the NEC by permission of the National Fire Protection Association, which produced and copyrighted Part VIII of the IRC (see Chapter 34 of the IRC 2015 edition). A more in-depth look at the electrical provisions contained in the *International Residential Code*, along with a comparison to the NEC, is available in chapter 18 of this book. Handy cross-references between the IRC and the NEC are included in Appendix A. For metric conversions, this publication utilizes those provided in the NEC as specified by Section 90.9, which differ from the conversions used by the IRC (see chapter 18 for additional information and a more complete comparison).

The Purpose of the Code

Electricity is a powerful force. When under control, like fire, electricity is a dependable servant and performs endless tasks. When uncontrolled, both electricity and fire become terrible villains that can harm people and their property.

Therefore, one of the primary purposes of the electrical code is electrical safety. An essential aspect of any safe wiring installation is conformity to the electrical code. Usually, local safety regulations in the form of a municipal ordinance or state law are based upon the latest edition of the electrical code. The primary purpose of the NEC, as outlined in Section 90.1, is “The practical safeguarding of persons and property from hazards arising from the use of electricity.” While installing electrical equipment in compliance with the Code does not guarantee the system will be free from risk or electrical hazard, doing so reduces the likelihood of fires from electrical origin. Fire and electric shock hazards, often present in premises wiring systems, are minimized by proper installation and use.

Another key element in providing a safe electrical installation is to follow manufacturers’ instructions and fully comply with any limitations placed on the installation or use of the equipment. In many cases, these instructions accompany the product and give requirements such as temperature rating of supply conductors, minimum circuit size, the maximum rating of overcurrent protection or grounding, or bonding needs. Compliance with these instructions is required by the Code and product standards.

The NEC is intended to apply to premises wiring systems. Other codes govern the installation of the utility transmission, distribution and supply systems. A premises wiring system comprises interior and exterior wiring, including outside branch circuits and feeders installed on or between buildings used for power that supplies energy to motors, lighting, control, and signal circuit wiring that are combined or used with any hardware, fittings, and wiring devices that may be either temporarily or permanently installed. The premises wiring system typically begins at the service point at the load end of the service drop (drip loop) or load end of the underground service lateral and ends at the branch circuit outlet(s).

Electrical Codes and Inspection

In many areas, electrical inspection services are provided to determine conformance with the Code and other applicable safety regulations and building codes. In most cases, these inspections are required by state, county or municipal laws or ordinances. These jurisdictions adopt an electrical code, which then becomes a legally enforceable document. It is also somewhat common that these inspection agencies produce and adopt local electrical installation requirements that supplement or amend the NEC for their jurisdiction. It is important that the installer contact the local inspection jurisdiction before beginning an electrical installation or modification to determine which edition has been adopted and to obtain a copy of local wiring rules, if any.

An electrical installation permit is usually required where an inspection program is in place. It is commonly required that the permit, which must be obtained prior to beginning the installation, be posted in a visible location on the project.

Inspections Required

Several inspections are typically required during the course of construction. Most jurisdictions require an electrical inspection
prior to covering or “closing in” any work. The IRC includes a section on inspection and approvals, which requires all new electrical work and parts of existing electrical systems that may be affected by new work or alterations to be inspected by the building official, often the building inspector or electrical inspector, to ensure compliance with the applicable electrical code.

Electrical inspections to determine code-compliance are commonly performed at three critical stages of construction. These three stages of completion of the project are referred to as the rough-in, service, and final inspections. Checklists and cross-references will provide the reader additional information relative to what is intended by the Code for the various aspects of one- and two-family dwelling electrical systems. Rough-in inspection is performed after all feeder and branch-circuit wiring, including boxes and cables, is installed and before building finish conceals any of the wiring. Conductors have been spliced inside of boxes and enclosures. The required provisions for grounding devices and equipment are in place. The wiring should not be energized at this point since the inspector will be examining the exposed wiring inside of boxes and enclosures. Installation of the electrical service, including grounding and bonding, is inspected and must be approved before most electrical utilities will connect power to the service. Final inspection is performed after all wiring is complete, including wiring devices, and after luminaires, heating and air-conditioning equipment, and appliances are installed and connected. Some inspection agencies issue a certificate of final inspection or an occupancy permit before the building or the space being added or remodeled can be used.

In an area where an electrical licensing and inspection service is not required or available, other safeguards may be available. For both installer and independent electrical inspector, the owner should insist on seeing documentation that they are qualified to perform the electrical installation and inspection. This may be in the form of a registration by a controlling agency such as an electric utility, by passing one or more certification examinations, or by training and experience. The installer and private inspection firm should also be bonded and insured. Insist on documentation in writing from the installer and inspector that the installation is compliant with the applicable electrical code. This is an extremely important and required element of our electrical safety system. Four critical components of the electrical safety system are: (1) quality electrical safety codes and standards; (2) qualified electrical testing laboratories; (3) qualified and competent electrical inspectors; and (4) qualified persons performing the installation.

Approval Factors for Authority Having Jurisdiction

The authority having jurisdiction (AHJ) has the responsibility to enforce the Code as well as to interpret and apply its requirements to the electrical installation under consideration. As mentioned previously, local laws or ordinances set out the requirements for electrical wiring.

An AHJ also has the responsibility for approving electrical
equipment that will be used in the electrical installation. The Code specifies, “The conductors and equipment required or permitted by this Code shall be acceptable only if approved” [NEC 110.2 or IRC E3403.1]. Approved is defined as “acceptable to the authority having jurisdiction.” Thus, the electrical inspection authority has the responsibility of determining which equipment is acceptable for the electrical project. The AHJ may be the building official, an organization, or an electrical inspector. Authority having jurisdiction is defined in the NEC as “An organization, office, or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.” IRC R104.1 generally designates the building official as the authority having jurisdiction.

The term authority having jurisdiction is broad in scope, since jurisdictions and approval agencies vary, as do their responsibilities. Where public safety is primary, the entity with this responsibility may be a federal, state, local, or other regional department or individual such as a fire chief; fire marshal; chief of a fire prevention bureau, labor department, or health department; building official; electrical inspector; or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the AHJ. In some circumstances, the property owner or his or her designated agent assumes the role of the AHJ; at government installations, the commanding officer or departmental official may be the AHJ.

Listed or Labeled Equipment

Many electrical inspection authorities rely heavily on labeling of equipment under the program of a qualified electrical products testing laboratory. Some jurisdictions operate under a law or ordinance where it is required that only listed and labeled equipment be used in a project. Other jurisdictions require listing or labeling only where such requirements are contained in the Code for a specific product.

Equipment used in electrical installations should be listed or labeled by a qualified third-party electrical products testing laboratory. The Code requires electrical installations and equipment to be approved [NEC 110.2 or IRC E3403.1]. Inspectors are required to approve installations and generally base the approvals on the use of listed products.

The IRC has a mandatory requirement that all electrical materials, components, devices, luminaires, and equipment be listed [IRC E3403.3]. Equipment is also required to bear a listing label and to be installed, used, or both, in accordance with any instructions from the manufacturer. Product examination should be performed by a third party, independent and qualified testing organization having the facilities, testing equipment and qualified staff to perform these examinations. This organization should also perform ongoing inspection of the production of this electrical equipment. The primary role of the inspector is to ensure that the listed product is installed in accordance with the manner the product has been tested to be installed and used. The NEC provides additional guidance, in that factory-installed internal wiring or the construction of equipment that is listed by a qualified electrical products testing laboratory need not be inspected at the time of installation, except to detect alterations or damage [NEC 90.7].

Installation and Use

Listed or labeled equipment shall be installed and used in accordance with any instructions included in the listing or labeling and supplied by the manufacturer. It is important to apply these instructions properly in the field. Just because a device or a unit of electrical equipment is listed does not mean the installation of the equipment is acceptable. The product must be installed and used within the limitations of the listing. For example, if an electrical enclosure is limited to dry locations only, then it cannot be installed in a damp or wet location. This would be a violation of the Code; in addition, it would violate a listing requirement [NEC 110.3(B) and IRC E3403.3].

These Code sections provide important requirements that should be carefully followed. Another example directly related to dwellings is recessed incandescent luminaires that are manufactured in a variety of styles. Some of these luminaires are suitable for embedding in thermal insulation, while
others are not. In addition, manufacturers’ instructions are specific as to which trims are permitted to be installed on which rough-in housing. All these markings and instructions must be followed to ensure a safe installation.

Many inspectors understand these listing installation instructions and incorporate the Guide Card information from the Underwriters Laboratories Electrical Construction Equipment Directory (UL White book) and similar directories into the requirements of the Code. Others feel the information from these directories supplements the requirements of the Code and is enforced where applicable. These product requirements provide conditions for safe installation of equipment that make compliance necessary. The means for identifying listed equipment may vary for each organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The AHJ should utilize the system employed by the listing organization to identify a listed product.

Qualified Persons

Electrical wiring and equipment should be installed by competent, qualified, and knowledgeable individuals. An improper installation will increase the risk of fire and injury. However, the best-designed and manufactured electrical products can be installed improperly and become an electrical hazard. Good intentions are not always enough. Qualified and experienced individuals select equipment that is designed for the use and environment and install circuits that are suitable for the load to be carried by the equipment.

The definition of *qualified person* is found in NEC Article 100, “One who has skills and knowledge related to the construction and operation of the electrical equipment and installations and has received safety training to recognize and avoid the hazards involved.” Many areas where electrical inspection programs are in place require that those persons installing electrical equipment demonstrate their qualifications or credentials to do so by passing an examination. Often, one must show evidence of completing training in an apprenticeship or vocational training program before the person is permitted to take an examination. After he or she passes an examination, it is common that electricians and/or electrical contractors are licensed by these inspection jurisdictions or by a state agency. Licenses usually must be renewed on a regular basis, most often from one to three years. Where licensing requirements are in place, continuing education to maintain one’s knowledge and skills in the trade is very common.

Where improper types of equipment or materials are installed, or where proper equipment or materials are not installed in accordance with the manufacturer’s instructions, electricity can become a serious threat that may lead to a severe hazard to life and property.

It also becomes a threat when electrical equipment or material is handled by those who are unfamiliar with its installation or who are not properly trained. The Code gives guidance on the type of safety training which qualifies...
individuals to plan and perform the basic tasks that sometimes necessarily involve energized equipment. NFPA 70E, *Standard for Electrical Safety in the Workplace*, serves as the foundation for safety training requirements and safe work practices. One cannot learn design specification, installation or inspection just from reading the *Code*. The *Code* is not intended as a design specification or training manual. There is no substitute for the experience gained while working as an electrician, designer, inspector, or engineer.

Mechanical Execution of Work

In spite of all the rules and regulations governing the design, manufacture, testing and installation of electrical equipment, much of the responsibility for a safe and adequate installation depends upon the integrity of the installer and proper electrical inspection. The old truism, “If it’s worth doing, it’s worth doing right,” certainly applies to electrical wiring and inspection. In the final analysis, much of the success or failure of an installation depends upon the pride taken by both the installer and the inspector, and their commitment to making a safe and code-compliant installation.

Neat and Workmanlike

The *NEC* requires that electrical equipment “be installed in a neat and workmanlike manner.” Determining that an electrical installation has been installed in a neat and workmanlike manner is subjective. However, it can be said that usually “Good work looks good.” Inspectors know that where they find equipment, like conduit and boxes, not installed plumb, or cables twisted and installed in a random and careless manner, other parts of the installation are likely to be deficient as well [NEC 110.12]. *Equipment* is defined by the *Code* as, “A general term including materials, fittings, devices, appliances, luminaires, apparatus, machinery, and the like used as part of, or in connection with, an electrical installation.” Thus, the requirement that equipment be installed in a neat and workmanlike manner is broad and intended to be applicable to the entire electrical installation.

Here are ten basic steps that exemplify good mechanical execution of electrical work:

1. Unused openings in outlet, device, pull and junction boxes, conduit bodies and fittings, raceways, auxiliary gutters, cabinets, equipment cases or housings are effectively closed with knockout seals or other materials that provide substantial protection that is equivalent to that of the wall of a box or piece of equipment.

2. Conductor insulation is not damaged and wires are not nicked or damaged at terminations. Care is exercised and proper tools are used when the insulation is stripped.

3. Cable assemblies are not kinked or excessively bent sharper than the permitted radius. Bends in cable assemblies do not have a radius that is less than five times the diameter of the cable.

4. Staples used to secure cable assemblies are not driven too tightly. In some cases, insulated types of staples may provide better protection against damage.

5. All terminations are made in accordance with the manufacturer’s instructions provided on

Photo 1.2. Typical listing marks and labels on electrical equipment
the equipment. Screws that engage fewer than two threads and the screws used to mount devices are not used to terminate conductors.

6. Proper tools were used to end raceways. The scorch and burn marks on nonmetallic conduit are evidence of overheating and may indicate permanent damage was done to the conduit.

7. Exposed wiring and equipment were protected from contamination during construction. All equipment was cleaned both inside and outside before it was energized.

8. Connections of all metal sheathing of electrical cables, raceways and equipment are made up wrenchtight. This helps to ensure an effective fault-current path.

9. Insulation integrity for all wiring was verified. This was done to be sure that the system will not suffer from short circuits or ground faults when energized.

10. Protection against physical damage is provided for exposed electrical wiring and equipment. The potential use of the area after construction has been completed and the premises occupied was considered in making this judgment.

Ohm’s Law and Basic Electrical Theory

Electrical current flowing through any electrical circuit can be compared with water under pressure flowing through a fire hose. Water flowing through a fire hose is measured in gallons per minute (GPM), and electricity flowing through a circuit is measured in amperes (A).

Water flows through a hose when pressure is exerted upon it and a valve is opened. Water pressure is measured in pounds per square inch (psi). An electrical current flows along an electrical conductor when electrical pressure is applied to it and a path is provided for the current flow. Just as the pounds per square inch (pressure) cause gallons per minute to flow, so the volts (pressure) cause amperes (current) to flow. It takes more pressure to force the same amount of water through a small hose than through a larger hose. A small hose, with the same pressure applied to it in comparison to a larger hose, will pass much less water in a given period. It therefore follows that the small hose offers a greater resistance to the flow of water.

In an electric circuit, a greater electrical pressure (volts) will force a given amount of current (amperes) through a small conductor (resistance) than that required to force the same amount of current (amperes) through a larger conductor (resistance). A smaller-sized conductor will allow less current (amperes) to pass than a larger-sized conductor will if the...
same electrical pressure (volts) is applied to each conductor for the same period. The smaller conductor can only be assumed to offer greater resistance (ohms) than the larger conductor. Thus, we may define resistance as the “property of a body that resists or limits the flow of electricity through it.” Resistance is measured in ohms—a term similar to friction in a hose or pipe.

Theory Terms and Definitions

The following definitions relate to basic electrical theory. It is important that installers and inspectors have a working knowledge of electrical theory. Such knowledge is often vital in determining proper size of conductors for circuits of various loads.

Volt — the unit of electrical pressure — is the pressure required to force one ampere through a resistance of one ohm; abbreviated as “E,” the first letter of the term electromotive force.

Ampere is the unit of electrical current that will flow through one ohm under a pressure of one volt in one second; abbreviated as “I,” the first letter of the term intensity of current.

Ohm — the unit of electrical resistance — is the resistance through which one volt will force one ampere; abbreviated as “R,” the first letter of the term resistance.

Watts is the unit of measurement of the energy flowing in an electrical circuit at any given moment. It is also the amount of work being performed in the electrical circuit. The terms watts or kilowatt have been used more commonly to express the amount of work done in the electrical circuit rather than the term joule. Watts is the product of multiplying volts and amperes and is sometimes referred to as volt-amperes. One thousand volt-amperes are referred to as one kilovolt-ampere or one kVA.

Ohm’s Law

George Simon Ohm discovered the relationship between current, voltage, and resistance in an electric circuit in 1826. He found, by experiment, that pressure equaled the product of current and resistance; this relationship is referred to as Ohm’s law. This law is the practical basis on which most electrical calculations are determined. The formula may be expressed in various forms and by its use, as in the three examples shown in figure 1.5.

If any two values are known, the third can be found by use of the formula. For example, if the resistance and the voltage are known, the current can be determined by dividing the voltage by the resistance. This can be valuable in determining the amount of current that will flow in the circuit to properly size conductors as well as overcurrent devices.

Watts Wheel

The Watts wheel has been developed and published in many manuals and in several variations to illustrate watts or power and its relationship to the elements of Ohm’s law. As shown in this text, it is accurate for dc circuits and for resistive loads of ac circuits where the power factor is near 100 percent or unity (see figure 1.4). Do not attempt to use it for motor loads, as both power factor and motor efficiency must be factored into the formula (see figure 1.6). In ac circuits, we use the term impedance rather than ohms to represent resistance of the circuit. Impedance is the total opposition to current flow in an ac circuit; it is measured in ohms. Impedance includes resistance, capacitive reac-
On e- and Two-Family Dwelling Electrical Systems

... and inductive reactance. The last two factors are unique to ac circuits and can usually be ignored in circuits such as incandescent lighting loads and heater circuits consisting of resistive loads. A detailed explanation of capacitive reactance and inductive reactance is beyond the scope of this text but can be found in many excellent texts on electrical theory.

Definitions and Trade Terminology

The NEC and IRC both include some unique definitions that must be clearly understood in order for one to apply the rules, install, and inspect electrical systems and equipment. Each chapter throughout this publication will address applicable definitions found in Article 100 of the NEC or Chapter 35 of the IRC. Some definitions apply to all electrical installations, and others apply only to specific portions of the electrical installation. For example, the definitions specific to swimming pools can be found in Article 680 of the NEC or Chapter 42 of the IRC. Let’s take a closer look at the following definitions of general terms in the Code.

Labeled. “Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.”

Listed. “Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production of listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.”

Identified (as applied to equipment) “Recognizable as suitable for the specific purpose, function, use, environment, application, and so forth, where described in a particular Code requirement.”

Equipment. “A general term including material, fittings, devices, appliances, luminaires, apparatus, machinery, and the like used as a part of, or in connection with, an electrical installation.”

In Sight From (Within Sight From, Within Sight). “Where this Code specifies that one equipment shall be “in sight from,” “within sight from,” or “within sight of,” and so forth, another equipment, the specified equipment is to be visible and not more than 15 m (50 ft) distant from the other.”

Appliance. “Utilization equip...
Index

A

Air-conditioner equipment 357
- Arc-fault circuit interruption (AFCI) protection 365
- Branch-circuit conductor size 358
- Branch-circuit maximum overcurrent protection rating 359
- Leakage current detection and interruption (LCDI) 365
- Minimum circuit ampacity 359
- Nameplate information 357
- Overcurrent protection requirements 365
- Room air conditioners 364
- Working space 362

Air conditioning equipment 328
- Non-coincident 328

Ampacity correction and adjustment factors 30, 32
- Multiple cable assemblies installed in a common race-way 167

Ampere
- Fractions 44

Antennas 468
- CATV 470

Appliance 320
- Appliance unit switches used as disconnecting means 330
- Attachment plug and receptacle used as disconnecting means 330
- Branch circuit conductor 320
- Branch circuit requirements 320
- Built-in dishwasher 323
- Clothes dryer 50
- Combination microwave oven and range hood 324
- Connected with flexible cord 322
- Continuously loaded 320
- Disconnecting means 327
- Disconnecting means for permanently connected appliances 327
- Electric range 50
- Fastened in place 322
- Household cooking appliances 322
- Installation 321
- Motor-operated appliance 320
- Nameplate 321
- Range hoods 324
- Small appliance branch circuits 46
- Wall-mounted ovens and counter mounted cooking units 325

Appliance garage 189

Approved

B

Back-fed 84, 149
- Baseboard heating units 341
 - Hazard 224
 - Listing 343
 - Not to be located beneath electrical receptacles 343
- Basements and garages 190
- Bathroom 188, 193, 292, 406
 - Bathtub and shower spaces 193
 - Luminaires 292

Boathouses 193

Bonding (Bonded) 103
- Conductive materials and other equipment 104
- Equipment 104
- Locknuts 112
- Metal gas piping or other piping systems 126
- Metallic enclosures 111, 125
- Metal piping systems 126
- Purpose of 104
- Service equipment 110

Bonding jumper 104
- Equipment 104
- Main 103, 107, 147
- Points of attachment must be accessible 126

Boxes 256, 430
- Clamp fill 262
- Conductor fill 261
- Device or equipment fill 263
- Fan outlets 274
- Fill calculations 261
- Floor 273
- Flush mounted 266
- Luminaire outlets 272
- Metal boxes 259
- Metallic boxes on opposite sides of walls or partitions 278
- Multiple cable entries 265
- Nonmetallic boxes 260
- Pull and junction boxes, conduit bodies 264
- Securing and supporting 268
- Spacing limitations 277
- Support fittings fill 262, 433
- To be accessible 276
- Unused openings 272
- Volume calculations 259
- Wet or damp locations 265

Box-fill calculations 261
Branch circuit 42, 211
Appliance 42
Bathrooms 193
Calculation of 43
Common area 223
Fire alarm systems 461
General purpose 42
Individual 42
Maximum load 221
Multiwire 47, 214
Overcurrent device 42
Permissible load 222
Power and lighting distribution 211
Required 214
Voltage limitations 211
Branch-circuit conductor(s) 212
Appliances 212
Color code 220
Overcurrent devices 220
Branch-circuit, feeder 159, 160
Branch-circuit selection current (BCSC) 358
Building 42
Burglar or fire alarm system 191, 201, 204
C
Cabinets 138
 Installed in walls 139
Cable(s)
 Assemblies 149, 150, 165, 464
 Listed Class 2 280
 Nonmetallic-sheathed cable (Type NM) 265, 279
 Tyle SE cables for services 80, 246
 Type USE 77
Calculating and sizing requirements 43, 448
Calculation of loads
 Optional method 52
Ceiling suspended (paddle) fans
 Listed 274
Central heating appliances 322
Central heating equipment 321
Clothes closet 42, 147, 287
Compressor L.R.A. 357
Communication circuits 465
Concealed 158
Concrete-encased electrode 115
Conductor(s)
 4 AWG or larger 164, 183
 Fill 167, 183, 239, 261
 In meter enclosures 79, 144
 Insulation types 29
 Isolated grounded (neutral) conductor 165
 Load size 43
 Minimum sizes and types 211, 415
 PFLA conductors 463
 Routing and induction 145, 281
 Service and feeder conductor sizing 43
 Tap 123
Conduits
 Body(ies) 182, 256, 259
 Bushings 144
 Conduits and tubing 169
 Connection to the earth 107
 Continuous load 43
 Cooking appliances
 Cooking unit, corner mounted 43
 Grounding of 447
Crawl spaces 190
D
Damp and wet locations 18, 138, 233, 310
Demand factors 49, 159
Direct burial 22, 174, 177
 Cables or conductors 258
Disconnecting means
 Service equipment 72, 78, 80, 379, 419, 420
 Dwelling(s)
 Feeder taps 159
 Load diversity 48
 One-family dwelling 48
 Two-family dwelling 57
 Unit 44
E
Earthing 103
Electrical metallic tubing (EMT) 164, 167, 170
Electrical nonmetallic tubing (ENT) 167, 181, 242
Electrical penetrations of fire-rated structural members 277
Electric space-heating cables 347
 Clearance of 347
 Dry board installations 348
 Installation in concrete or poured masonry floors 349
 Installation of 348
 Installation on dry board, in plaster, and on concrete ceilings 348
 Restricted locations 347
 Secured in place 349
 Spacing between adjacent runs 249
 Splicing of 348
Electric space-nonheating cables
 Installation of 248
Electric water heaters 147, 238, 246, 345
Electrostatic air cleaner 321
Enclosure types
 Ferrous metal enclosures 126
Equipment
 Grounding 128, 131, 150, 163
 Grounding conductor(s) 131, 150, 163, 216, 217
 Requiring grounding 115, 148
Equipment bonding jumper 164, 177
 Size of 108
Equipment grounding conductor fill 168, 183, 239, 261
Expansion joints 349, 352
Exposed 149, 158

F

Feeder
 Calculating size 43
Feeder(s) 43, 158, 160, 179
 Cables 167, 178
 Cables and raceways 178
 Conductors 159, 163, 164, 166, 179
 Feeder or service calculations 43
 Overcurrent protection 160, 161
 Panel 158, 160
 Physical protection 180
 Taps 161
 Ungrounded 160
Fire alarm systems 460
Fire-resistive wall, floor, or ceiling assembly 260
Fire-stopping penetrations 278
Fixed electric space-heating equipment 341, 342
 Branch-circuit requirements 343
 Disconnecting means 344
 Disconnecting means for equipment without supplementary overcurrent protection 345
 Disconnecting means for equipment with supplementary overcurrent protection 344
 Heat damage 342
 Heating loads 49
 Insulation rating 342
 Overcurrent protection 346
 Physical damage 342
 Required spacing from combustible material 342
 Resistance-type heating elements 344
Fixtures 194, 211
Flexible cord 225, 250, 323
Flexible cord assembly 322
Flexible metal conduit (FMC) 164, 165
Furnace 246, 279, 308, 321, 343
Fuses 450

G

Garages and accessory buildings 189
Grounded (neutral) conductors 43, 103, 106
 Brought to service equipment 106, 131
 Equipment (EGC) 131
Insulated 180
 Minimum size 43, 50, 66
 Not insulated 180
Ground-fault circuit interrupter(s) (GFCI) 187, 188, 308, 324, 344, 373
Ground-fault current path 103
Grounding connection(s) 105
Grounding electrode conductor(s) 104
 Aluminum or copper clad aluminum 122
 Bonding metal enclosures 125
 CATV Systems 472
 Connections 121
 If exposed to physical damage 124
 Installation 122, 124
 Material 122
 Size of 119
 Size of main 119, 124
 Splices 123
 Taps 123
 To grounding electrode 120
Grounding electrode(s) 114
 Permitted for grounding 117
 System 114
Grounding (Ground) 104, 475
 CATV Systems 471
 Cord and plug connected 330, 334, 336
 Depend on solder 121
 Electrical systems 104
 Electrode conductor taps 123
 Path to grounding electrode 107
 Purpose of 104
 Separate buildings or structures (outbuildings) 131
 Service-supplied alternating current system 104
 System grounding connections 104
 Underground metal elbows 130

H

Habitable space 191
Handhole enclosures 258, 276, 280
Heating cables 195
Heat pump
 Loads 53
Heat pump compressor 363
 Branch-circuit requirements 358
 Disconnecting means rating 360
 Indoor heat pump equipment 363
 Nameplate information 357
Hermetic motor-compressor 357
Horsepower rating 364
Humidifier 321
Hydromassage bathtub 194, 406
Impact and crush resistant 78
Inductive lighting loads 222
International Code Council (ICC) 42
International Residential Code (IRC) 42
Intersystem bonding and grounding requirements 466
Irreversible compression-type connectors 123
Island counter spaces 211
Isolated grounded (neutral) conductor 165

J
Joist or stud spaces 258
Junction box 390

K
Kitchen(s) 191, 195, 203
Areas 48
 Built-in dishwasher and trash compactor 323
 Range hoods 324
 Receptacles and circuits 195, 196
 Wall-mounted ovens and counter mounted cooking units 325
 Waste disposer 323
Knockouts
 Opening in cabinets or meter socket enclosures 112, 260, 265

L
Laundry areas 194
 Branch circuit 47
Lighting outlet
 Controlled by wall switch 213
Liquidtight flexible metal conduit (LFMC) 177
Liquidtight flexible nonmetallic conduit (LFNC) 178
Listed or labeled equipment 11
Load calculation 43, 414
 Common requirements 44
 Examples 48
 Optional calculation method 44, 54
Locations
 Location, damp 146
 Locations, wet 146
Locked-rotor condition 360
Low-impedance path 106
Low voltage systems 455
 Remote control, signaling and power-limited circuits 456
Luminaire(s) 211, 217, 222, 237, 287, 300, 303
 Access to splices 301
 Bathrooms 292
 Boxes 270, 272
 Caution for existing installations 299
 Clothes Closets 292
 Combustible materials 296
 Conductor temperature limitations 297
 Conduit system 170, 271
 Dry, damp, and wet locations 290, 385, 386
 Electric discharge luminaires 301
 Fires 288
 Fluorescent 298
 Grounding of 303
 Installation requirements 291
 Instructions or Markings 288
 Locations for track lighting 305
 Low-voltage lighting systems 306, 382
 Markings 288, 297
 Outdoor 292
 Recessed 295
 Recessed incandescent 295
 Recessed incandescent luminaires 296
 Supply conductors 299, 383, 384
 Supported by trees 303
 Supporting of 301
 Swimming pools 292, 381
 Track lighting 304
 Underwater 383
 Wet-niche 285

M
Main breaker 84, 125
Main power feeder(s) 91, 159
Manufacturer’s marking label 350
Marking
 Heating cable 365
 Main 85
 Service disconnect 84
 Service disconnecting means 84
 Suitable for use as service equipment 84
 Maximum allowable fill for the conduit or tubing 141
 Metal building frame 115
 Metal enclosures 313
 Metal enclosures for grounding electrode conductors 126
 Metal plug or plate 139
 Metal well casing 118
 Meter
 Pedestal 138
 Socket 138
 Minimum gutter space 138, 141
 Minimum number of general purpose lighting circuits 45
 Motor operated and combination loads 222
 Motors, motor operated well pumps and metal well casings 130

N
National Electrical Safety Code 75
Neat and workmanlike manner 13
Network powered communication systems 172
Neutral bar in a panel feederboard 166
Neutral bonds meter base and service equipment 110
Nipples 141
Noncoincident loads 52
Notches in wood 181

O

Ohm's Law 14
One-family dwelling
 Calculations 48
Other Metal piping systems 128
Other space used for environmental air 279
Outbuildings 131, 421
Outlet
 Outlets for single motors 49
Outlets
 Loads 45, 49
Overcurrent protection 159, 161, 178
 Service-entrance conductors 159
Overload protection 67, 161

P

Panelboards 84, 93, 96, 147, 149, 151
 In damp or wet locations 149
 Installation rules 150
 Installed as service equipment 150
 Overcurrent protection 148, 451
 Rating of 147
 Total load on overcurrent device 148
Peninsular counter space 229
Planning 41
Plan review 41
Plate electrode 117, 118, 472
Pool(s) 369
 Luminaires 381
Premises wiring 105
Product safety standard(s) 183, 206, 250, 281, 287
Property damage 127, 275
Protected/protection 180
 Against abrasion 139
 Dwellings 187
 From physical damage 180
 Magnetic fields 125, 424
Protective bushing or fitting 351

R

Raceway 150, 162, 164, 166, 167
 Raceways and cables that enter the cabinet above the level of uninsulated live parts 139
 Service-entrance conductors 43, 50, 148
 Raceways 139, 141, 163, 167
Radiant-heating panels 350
 Branch-circuit conductors 352
 Fault protection 353
 Installation in concrete or poured masonry 352
 Installation under floor coverings 353
 Requirements 351
Range loads 222
Rated load amperes 358
Rated-load condition 360
Readily accessible 83, 146, 361
Receptacle(s) 188, 204, 205, 225, 306
 AC and refrigeration equipment 225
 Basement and garages 189, 190
 Bathroom 188, 193
 Bathtub and shower spaces 193, 312
 Cord connectors 219
 Counter 222
 Faceplates 308
 Grounding methods 219
 Hallways 236
 Installed in wet or damp locations 310
 Island counter spaces 226
 Kitchen 191
 Laundry areas 194
 Non-grounding type 440
 Outdoor 190
 Outdoor outlets 311
 Outlet 45, 236, 237
 Peninsular counter space 226, 230
 Separate countertop spaces 229
 Switched 312
 Swimming pools 380
 Tamper resistant receptacles 202, 307
 Where required 307
 Recessed luminaires 295
Remote metering equipment
 Bonding and grounding of 130
Return air space 279
Rigid and intermediate metal conduit 170
Rigid polyvinyl chloride conduit (PVC) 173
Rod or pipe electrode 118

S

Separate countertop spaces 229
Service(s) 42, 72, 150
 Cable 77
 Calculating size 43
 Conductors 72
 Entrance equipment 92
 Equipment 43, 72, 80, 82
 Grounding target 104
Gutter style 138, 141
Outbuildings 89, 131
Overhead 93
Service calculations 48, 65
Service disconnect 89
Common area circuits 88
Plaque or directory 98
Service disconnecting means 89, 103, 166, 330, 346
Equipment connected to 94
Maximum number of 88
Service drop 72, 189
Service-drop clearances 73
Vertical 75
Service-entrance cable 78, 79, 179, 180, 246
Installation 80
Service entrance conductor(s) 77
Ampacity of 44
Load calculation 43
Minimum size of 44
Overload protection 92
Sizing of 90
Sunlight resistant 77
Ungrounded 91
Wiring methods 82
Service equipment 43, 57, 65, 71, 72, 80, 82, 106, 111, 158, 238, 376, 391, 420, 457, 467
Dedicated electrical spaces 86
Electrical continuity 103, 111
Sizing 58
Working space 85
Service lateral 73
Service-lateral cable 77
Service masts 76
Service point 73
Service raceway
Noncurrent carrying metal parts 104
Set of plans 41
Sheet metal screws 21, 217
Sill plate 80
Smoke alarms 204, 205
Snap switches 28, 218, 313
Splices 22
Access to 301
Strap type ground clamps 122
Subpanel 150
Supplementary overcurrent protection 83, 344, 346
Supplementary overcurrent protective devices for the subdivided loads 344
Support wires 269
Surface-type cabinets and meter socket enclosures 138
Switches 145, 312, 444
Switches and circuit breakers 145, 312
Switch loops 145

T
Tap(s) 123
Tap rules 123, 159
Temporary power 310
Thermal insulation 31, 244, 246
Thermostat 344, 346
Thermostatically controlled switching devices 346
Threaded couplings
Connectors 112
Threaded bosses 112
Two-family dwelling
Loads 57
Type RHH and RHW 79, 179
Type SE
Cable assemblies 80

U
UL White Book
Category (TYLZ) 80
Underground Feeder and Branch Circuit Cable (Type UF) 247
Underground metal gas pipe 128
Underground service entrance cable (Type USE) 78, 179
Underwater metal water pipes 114
Unit load for branch circuits and general lighting 44
Unit switch
Disconnecting means 330
Utility room 192
Utility's rule book 138

V
Vertical clearance
Vertical clearances above grade 73
Voltages used in calculations 44

W
Wall opening protective materials 278
Watt's Wheel 16
Weatherhead 72, 76, 80
Wet location 81
Wire bending space 141
At terminals 141
In enclosures 145
Wiring methods 140, 167, 170, 177, 182, 219, 238
Air-handling spaces 476
Class 2 locations 457
Ducts or plenums 279
Knob-and tube 436
PFLA circuits 462
Working space 85, 367
One- and Two-Family Electrical Dwelling Systems
Ninth Edition

Editor in Chief:
David Clements

Director of Education:
L. Keith Lofland

Education, Codes and Standards Coordinator:
Joseph Wages, Jr.

Director of Publishing:
Kathryn Ingle

Creative Director / Cover Design:
John Watson

Research Editor & Webmaster:
Laura Hildreth

Contributors:
L. Keith Lofland
Michael J. Johnston

Technical Edit and Review:
L. Keith Lofland
Joseph Wages, Jr.
David Clements

Technical Drawings:
L. Keith Lofland
Michael J. Johnston
IAEI Archives

Layout and Production:
Laura L. Hildreth
John Watson

Organization Contributions and Support:
National Fire Protection Association (NFPA)
Underwriters Laboratories Inc. (UL)
International Code Council (ICC)

Photos / Illustrations:
Arlington Industries, Scranton, PA
Carlon, Memphis, TN
Cooper Bussmann, St. Louis, MO
Eaton Cutler-Hammer, Beachwood, OH
Greaves Corporation, Guilford, CT
Hunter, Christel, Las Vegas, NV
Hunter, Randy, Las Vegas, NV
IAEI Archives, Richardson, TX
Ideal Industries, Inc, Sycamore, IL
Lofland, L. Keith, Sachse, TX
McGovern, Bill, Dallas, Texas
Pass & Seymour/Legrand, West Hartford, CT
Raco Boxes, South Bend, IN
Steel City Boxes, Memphis, TN
Strongwell, Bristol, VA
Thomas and Betts, Memphis, TN
Thomas, Tim
UL, Northbrook, IL
Wages, Joseph Jr., Celina, TX
Watson, John, Amarillo, TX

Composed at IAEI in Minon Pro by Adobe® and Nueva Standard by Adobe®.
With more than 123 million households in the U.S.\(^1\), it is vital for all electricians to become experts in design and installation of electrical systems in new and existing dwellings. It is even more incumbent on inspectors to be fully prepared to examine those installations diligently for safety, regardless of the code their jurisdiction enforces. And, they must have the information instantly available!

That’s why IAEI has sorted, organized and combined references from the *National Electrical Code* (NEC), the *International Residential Code* (IRC) and the product categories in the UL White Book. Now you have all the required information at your fingertips.

- Illustrations and detailed examples
- Background information
- Tables and photos present visual confirmation of the text
- Accurate and thorough information on all aspects of wiring

Make yourself a hero! Buy this book, devour it, apply it and keep all 123 million households safer. We all depend on you for our safety. \(^1\) U.S. Census, 2014

International Association of Electrical Inspectors
901 Waterfall Way, Suite 602
Richardson, TX 75080-7702
www.iaei.org

ISBN 978-1-890659-24-0
$65.95