Soares Book on Grounding and Bonding

Twelfth edition

International Association of Electrical Inspectors
Richardson, Texas
Notice to the Reader

This book has not been processed in accordance with NFPA Regulations Governing Committee Projects. Therefore, the text and commentary in it shall not be considered the official position of the NFPA or any of its committees and shall not be considered to be, nor relied upon as a formal interpretation of the meaning or intent of any specific provision or provisions of the 2014 edition of NFPA 70, National Electrical Code.©1

Publishers do not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information referenced in this work.

The reader is expressly warned to consider carefully and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions.

The publishers make no representations or warranties of any kind, including, but not limited to, the implied warranties of fitness for particular purpose, merchantability or non-infringement, nor are any such representations implied with respect to such material. The publishers shall not be liable for any special, incidental, consequential or exemplary damages resulting, in whole or in part, from the reader’s uses of or reliance upon this material.

1National Electrical Code and NEC are registered trademarks of the National Fire Protection Association, Inc., Quincy, MA 02169.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Fundamentals</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>To Ground or Not To Ground</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Grounding Electrical Systems</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>Grounding Electrical Services</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>Main Bonding Jumpers and Bonding at Services</td>
<td>94</td>
</tr>
<tr>
<td>6</td>
<td>The Grounding Electrode System</td>
<td>112</td>
</tr>
<tr>
<td>7</td>
<td>Grounding Electrode Conductors</td>
<td>138</td>
</tr>
<tr>
<td>8</td>
<td>Bonding Enclosures and Equipment</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>Equipment Grounding Conductors</td>
<td>182</td>
</tr>
<tr>
<td>10</td>
<td>Enclosure and Equipment Grounding</td>
<td>208</td>
</tr>
<tr>
<td>11</td>
<td>Clearing Ground Faults and Short Circuits</td>
<td>226</td>
</tr>
<tr>
<td>12</td>
<td>Grounding Separately Derived Systems</td>
<td>254</td>
</tr>
<tr>
<td>13</td>
<td>Grounding and Bonding at Buildings or Structures Supplied by Feeders or Branch Circuits</td>
<td>276</td>
</tr>
<tr>
<td>14</td>
<td>Ground-Fault Protection</td>
<td>290</td>
</tr>
<tr>
<td>15</td>
<td>Grounding and Bonding for Special Locations and Conditions</td>
<td>316</td>
</tr>
<tr>
<td>16</td>
<td>Grounding and Bonding for Electronic Equipment</td>
<td>368</td>
</tr>
<tr>
<td>17</td>
<td>Low-Voltage and Intersystem Grounding and Bonding</td>
<td>386</td>
</tr>
<tr>
<td>18</td>
<td>Grounding of Systems or Circuits of Over 1kV</td>
<td>408</td>
</tr>
<tr>
<td>19</td>
<td>Fundamentals of Lightning Protection</td>
<td>424</td>
</tr>
<tr>
<td>20</td>
<td>Tables</td>
<td>448</td>
</tr>
<tr>
<td>A</td>
<td>Origin of Concrete-Encased Electrode</td>
<td>467</td>
</tr>
<tr>
<td>B</td>
<td>National Electrical Grounding Research Project</td>
<td>468</td>
</tr>
<tr>
<td>C</td>
<td>Metric Conversion Reference</td>
<td>476</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>485</td>
</tr>
</tbody>
</table>
Preface

This book is dedicated to the memory of Eustace C. Soares, P.E., one of the most renowned experts in the history of the National Electrical Code in the area of grounding electrical systems. A wonderful teacher and man of great vision, Eustace foresaw the need for better definitions to clear up to the great mystery of grounding of electrical systems.

Eustace Soares’ book, Grounding Electrical Distribution Systems for Safety was originally published in 1966 and was based upon the 1965 edition of the National Electrical Code. Over the years, this book has become a classic.

A great majority of the recommendations contained in the original edition of his book have been accepted as part of Article 250 of the National Electrical Code. The grounding philosophies represented in the original edition are just as relevant today as they were then. To say that Eustace contributed more than any other man to solving some of the mysteries of grounding of electrical systems would not be an overstatement of fact. Previous editions have been extensively revised both in format and in information. An effort has been made to bring this work into harmony with the 2014 edition of the National Electrical Code and to retain the integrity of the technical information for which this work has been well known, at the same time adding additional information which may be more recent on the subject of grounding and bonding.

IAEI acquired the copyright to Soares’ book in 1981 and published the second edition under the title Soares Grounding Electrical Distribution Systems for Safety. IAEI acknowledges the contributions of Wilford I. Summers to editions two and three, and J. Philip Simmons as the principal contributor in the revision of the fourth through seventh editions. IAEI acknowledges Michael J. Johnston as the principal contributor in the revision of the eighth, ninth, and tenth editions. The principal contributors to the revision of the eleventh and twelfth editions were Charles F. Mello and L. Keith Lofland.

IAEI intends to revise this work to complement each new edition of the National Electrical Code so this will be an on-going project. Any suggestions for additional pertinent material or comments about how this work could be improved upon would be most welcome.
General Fundamentals
Chapter 1 — General Fundamentals

Objectives to understand...

- Fundamentals and purpose of grounding of electrical systems
- Definitions relative to grounding equipment from grounded and ungrounded systems
- Effects of electric shock hazards
- Purpose of grounding and bonding
- Short circuit vs. ground faults in electrical systems
- Circuit impedance and other characteristics
- Basic electrical circuit operation
- Ohm’s Law

From the beginning, the use of electricity has presented many challenges ranging from how to install a safe electrical system to how to develop minimum Code requirements for safe electrical installations. These installations depend on several minimum requirements, many of which are covered in NFPA 70, National Electrical Code, Chapter 2, Wiring and Protection. Understanding the protection fundamentals and performance requirements in Chapter 2 is essential for electrical installation, design, and inspection. To truly understand how and why things work as they do, one must always start with the basics. It is important that basic electrical circuits be understood, because grounding and bonding constitute an essential part to a safe electrical circuit. The process of grounding and bonding creates safety circuits that work together and are associated with the electrical circuits and systems.

The material in this book analyzes the how and why of these two functions of grounding and bonding and expresses their purpose in clear and concise language. It also examines grounding and bonding in virtually every article of the Code in addition to the major requirements of Article 250. Further, it provides information on grounding and bonding enhanced installations that exceed the minimum NEC requirements, such as for data...
processing facilities and sensitive electronic equipment installations. Chapter seventeen expands the information about those types of installations that are designed to exceed the Code requirements. It covers establishing an enhanced grounding electrode system or earthing system and installing feeders and branch circuits in a fashion that helps reduce the levels of electrical or electromagnetic interference (EMI) noise on the grounding circuits. This is accomplished through insulation and isolation of the grounding circuit as it is routed to the original grounding point at source of supply (service or source of separately derived system).

Some definitions of electrical terms that should be understood as they relate to the performance of grounding and bonding circuits are also included in this first chapter. This book emphasizes the proper and consistent use of the defined terms in both the electrical field and the NEC in order to develop a common language of communication.

Taking the Mystery Out of Grounding
For many years the subjects of grounding and bonding have been considered the most controversial and misunderstood concepts in the National Electrical Code. Yet there is no real reason why these subjects should be treated as mysteries and given so many different interpretations. Probably the single most effective method for clearing up the confusion is for one to review and clearly understand the definitions of the various elements of the grounding system. In addition, these terms should be used correctly during all discussions and instruction on the subject so that everyone will have a common understanding. For example, using the term ground wire to mean an equipment grounding conductor does no more to help a person understand what specific conductor is being referenced than does the use of the term vehicle when one specifically means a truck.

It is recommended that the reader carefully review the terms defined at the beginning of each chapter in order to develop or reinforce a clear understanding of how those terms are used in regard to that particular aspect of the subject. Also, many of the terms associated with the overall grounding system are illustrated to give the reader a graphic or pictorial understanding of their meaning. It should be noted that the graphics in this text are designed to illustrate a specific point and that not all conductors or details required for a fully compliant installation are necessarily shown.

This book is intended to assist the reader in establishing a strong understanding of the fundamentals of and reasons for the requirements of grounding and bonding to attain the highest level of electrical safety for persons and property. Appendix A provides information on the origin of concrete-encased electrodes. Appendix B provides a short history of the National Electrical Grounding Research Project. IAEI is committed to providing the highest quality information on grounding and bonding to the electrical industry and hopes that the reader benefits immensely from this volume.

Definitions of Electrical Terms
The following terms are not in alphabetical order; instead, they are sequenced on how the concepts are taught in logic starting with what pushes current, what current is, and then what impedes that current flow from dc then ac circuits.

Voltage (Electromotive Force). A volt is the unit of measure of electromotive force (EMF). It is the unit of measure of the force required to establish and maintain electric currents that can be measured. By international agreement 1 volt is the amount of EMF that will establish a current of 1 amp through a resistance of 1 ohm.

Current (Amperes). Current, measured in amperes, consists of the movement or flow of electricity. In most cases, the current of a circuit consists of the motion of electrons, negatively charged particles of electricity.

Impedance. The term resistance is often used to define the opposition to current in both ac and dc systems. The correct term for opposition to current in ac systems is impedance. Resistance, inductive reactance, and capacitive reactance all offer opposition to current in alternating-current circuits. The three elements are added together vectorially (phasorially), not directly. This results in the total impedance or opposition to current of an AC circuit.
Impedance is measured in ohms.

Resistance. Resistance is the name given to the opposition to current offered by the internal structure of the particular conductive material to the movement of electricity through it, i.e., to the maintenance of current in them. This opposition results in the conversion of electrical energy into heat.

Capacitance. A capacitor basically consists of two conductors that are separated by an insulator. A capacitor stores electrical stress. Capacitive reactance is the opposition to current due to capacitance of the circuit. The Institute of Electrical and Electronics Engineers (IEEE) defines capacitance as, “The property of systems of conductors and dielectrics which permits the storage of electricity when potential difference exists between the conductors.”

Inductance. Inductance is the ability to store magnetic energy. Inductance is caused by the magnetic field of an alternating-current circuit as a result of the alternating current changing directions. This causes the magnetic lines of force that surround the conductor to rise and fall. Induction is measured as inductive reactance. As the magnetic lines of force rise and fall, they work to oppose the conductor and induce a voltage directly opposite the applied voltage. This induced voltage is called counter-electromotive force or counter EMF. Induction is the current effect of an ac circuit. Where there is an alternating magnetic field there will be induction. This induction will result in inductive reactance, which opposes the current.

The Foundation of Grounding
The first and most vital element of a sound, safe structure is a solid footing or foundation on which to build the building. This foundation, usually consisting of concrete and reinforcing bars, must be adequate to support the weight of the building and provide a solid structural connection to the earth on which it sits. If the building or structure does not sit on a solid foundation, there can be continuous structural problems that might lead to unsafe conditions. Likewise, the electrical grounding system serves as the foundation for an electrical service or distribution system supplying electrical energy to the structure. Often the grounding of a system or metal objects is referred to as *earthing*, being connected to the earth. When solidly grounded, the electrical system must be connected to a dependable grounding electrode or grounding electrode system without adding any intentional impedance. The grounding electrode(s) supports the entire grounding system and makes the earth connection. It must be effective and all grounding paths must be connected to it. This serves as the foundation of the electrical system. Chapter six covers the grounding electrodes, their functions, and their installations.

Electrical Circuitry Basics
Anyone who has been involved in the electrical field for any length of time has heard the phrase, “Electricity takes the path of least resistance.”

Series and Parallel Paths for Current

Current will always try to return to the source

Current will return in as many paths that are available to it

Amount of current on a particular path depends on the impedance of that path

FIGURE 1.1 Series and parallel paths for current
grade school science class to the first-year apprentice to the seasoned veteran of the industry, the phrase is used to describe the path electrical current will take. The phrase is stated with pride, “Electricity takes the path of least resistance” or “Current takes the path of least resistance,” and usually not much thought is given as to what is really going on. In reality, current will take all paths or circuits that are available. Where more than one path exists, current will divide among the paths (see figure 1.1). As we will review later, current will divide in opposite proportion to the impedance. The lower impedance path or circuit will carry more current than the higher impedance path(s). The study of grounding and bonding is vital to applying basic rules relative to this important safety element of the electrical circuit. It is important to review some basic principles and the fundamental elements of electricity and how current relates to electrical safety.

Ohm’s Law in Review
Before we can have current flowing, there needs to be a complete circuit (see the circuit diagram in figure 1.2). The amount of current in an electrical circuit depends on the characteristics of the circuit. Voltage or electromotive force (E) will cause (push) current or intensity (I) through a resistance (R). These are the basic components of Ohm’s law (see Ohm’s law and its derivatives in Watt’s wheel in figure 1.2). Electrical current can be compared with water flowing through a water pipe. With the pressure being the same, the bigger the pipe, the less the resistance is to the flow of water through the pipe. The smaller the pipe, the greater the resistance is to the flow of water through it. The same holds true for electrical current. Larger electrical conductors (paths) offer lower resistance to current. Smaller electrical conductors (paths) offer greater resistance to current. There must be a complete circuit or path and a voltage (difference of potential) or there will be no current. This is true of both normal current and fault current.

Resistance as Compared to Impedance
Understanding the differences between the pure resistance of an electric circuit and the impedance of a circuit is important in gaining a thorough understanding of the grounding or safety circuit. In Ohm’s law, resistance is the total opposition to current in a dc circuit. In an alternating-current circuit, the total opposition to current is the total impedance comprised of three components. The impedance (Z) of an ac circuit is the inductive reactance, capacitive reactance, and the resistance added together vectorially (phasorially) [see formula in figure 1.3]. In a 60-cycle ac circuit, alternating current changes amplitude and direction 120 times per second and develops a magnetic field that results from the inductive reactance of the circuit. Therefore, minimizing the amount of the overall opposition (impedance) to current in the grounding and bonding circuits of electrical systems is very important. These circuits can be looked upon as si-
lent servants, just waiting to perform the important function of carrying enough current so overcurrent protective devices can operate to clear a fault.

Current in a Circuit

In any complete circuit or path that is available, current—be it normal current or fault current—will always try to return to its source. The statement on taking the path of least resistance is partially correct. Electrical current will take any and all available paths to return to its source (see figures 1.1 and 1.5). If several paths are available, current will divide and the resistance or the impedance of each path will determine how much current is on that particular path. It can be concluded from the above that if there is no complete circuit, then there is no current. Care is given to the installation of ungrounded (phase or hot) conductors so that the circuit will be complete to provide a suitable path for current during normal operation. The same principles and fundamentals apply to the installation of grounding and bonding conductors that make up the safety circuits. The equipment grounding (safety) circuit must be complete and must meet three important criteria:

1. the path for ground-fault current must be electrically continuous; (2) it must have adequate capacity to conduct safely any ground-fault current likely to be imposed on it; and (3) it must be of low impedance (see figure 1-26 and chapter eleven for more specific information relative to clearing ground faults and short circuits).

Article 250 mentions the term low-impedance path several times. As a quick overview, the opposition to current in a dc circuit is resistance. The total opposition to current in an ac circuit is impedance. When the phrase “low-impedance path” is used in the Code, it is referring to a path that offers little opposition to current whether it is normal current or fault current. The key element is ensuring there is low opposition or impedance to the flow of the current.

Overcurrent Device Operation

Overcurrent devices operate because of more current (amps) flowing than the device is rated to carry. Generally speaking, the more current through overcurrent devices above their rating the faster they open or operate; this is because they are designed to operate in inverse time. Relative to the discussion about impedance, the higher the impedance of the path, the lower the current through the overcurrent device and therefore longer time to open. The lower the impedance of the path, the greater is the current through the overcurrent device and faster opening time. Understanding these basic elements of electrical circuits helps one apply some important rules in Article 250. The following examples clearly demonstrate that amps operate overcurrent devices (see figures 1.6 and 1.7.)

Basic Electrical Theory Terms

![Ohm's Law](image)

- **Voltage** = \(V \) or Pressure that pushes
- **Resistance** = \(R \) or Resistance in ohms
- **Current** = \(I \) or Amperes that flow

Opposition to current in a dc circuit is resistance

Opposition to current in an ac circuit is made up of three components:

- **\(R \)** Resistance
- **\(X_L \)** Inductive reactance
- **\(X_C \)** Capacitive reactance

\[Z = \sqrt{V^2 + (X_L - X_C)^2} \]

Impedance = Opposition \((Z)\) or total opposition to current in an ac circuit

Figure 1.3 Basic electrical theory terms and formulas, including basic formulas for ac circuit resistance and impedance.
As with the electrical circuit installed for normal current, the equipment grounding (safety) circuit must also be installed for abnormal current to ensure overcurrent device operation in ground-fault conditions. The equipment grounding or safety circuit must be complete and constructed with as little impedance as practicable for quick, sure overcurrent device operation. Care must be taken when installing electrical systems and circuits, including the equipment grounding and bonding circuits of the system. Where the human body gets involved in the circuit it can, or often, results in an electrical shock or even electrocution in some cases. The human body introduces a relatively high level of impedance that impacts the overcurrent device operation. Ground-fault circuit interrupters provide a degree of protection from electrical shock, but standard overcurrent devices do not. Later in this chapter is a discussion about shock hazards and effects on the human body, and chapter fourteen provides more information about ground-fault circuit interrupters.

Proper Language of Communication
A common language of communication has been established to enable one to understand the requirements of the NEC, in general, and of grounding and bonding, in particular. A common
Chapter 1 — General Fundamentals

Bonding and Grounding Terminology

IAEI’s Soares Book on Grounding and Bonding places a huge emphasis on definitions of words and terms used for proper application of Code rules relating to the subject of grounding and bonding. Using a common language of communication is imperative to understanding this subject, and applying the Code to installations and systems in the field as clearly indicated in chapter one of this book. It is important that words and terms related to this subject mean what they imply by definition for all code users.

NEC Grounding and Bonding Revisions

In recent editions of the Code, there have been numerous revisions to many of the grounding and bonding terms used in the NEC. These revisions were the result of significant efforts of a special task group assigned by the NEC Technical Correlating Committee. The primary objective of this task group was to ensure accuracy of defined terms related to grounding and bonding, differentiate between the two concepts, and verify the use of these terms is uniform and consistent throughout the NEC. The work of this task group resulted in simply changing the meaning of defined grounding and bonding terms to improve clarity and usability within the NEC requirements where they are used. Code rules that use defined grounding and bonding terms were revised as needed to clarify the meaning of the rule and to ensure that these terms are used consistently with how they are defined in Article 100 and at 250.2. In many instances, rules were revised to become more prescriptive for code users to provide clear direction on what is intended to be accomplished from a performance standpoint. As an example, many rules throughout the Code used the phrase “shall be grounded,” which was replaced with the phrase “shall be connected to an equipment grounding conductor.” This simple revision will relay to the code user that a certain object not only needs to be grounded, but more importantly, “how” the object is to be grounded.

Sidebar 01.1 Bonding and Grounding Terminology

Ground-Fault Current in the Circuit

120-volt circuit

Overcurrent device opens

Equipment

Source voltage

1 = E \div R = 120 \text{ volts} \div .5 \text{ ohms} = 240 \text{ amps}

Note: Unless ungrounded conductors are totally severed (broken), a certain amount of load current in the normal circuit will be present (under ground-fault conditions)

Figure 1.7 Electrical circuit with ground fault to enclosure

Grounded and Grounded Conductor

The grounded conductor (usually a neutral) is generally a system conductor intended to carry current during normal operation of the circuit. The connection to ground (earth) of the system grounded (often a neutral) conductor is accomplished by a connection through a grounding electrode conductor either at the service or at a separately derived system. Generally, it should be understood that the grounded conductor should not be used for grounding of equipment on the load side of the system grounding.
connection at the service or source of separately derived systems. This separation between grounded conductors and equipment grounding conductors keeps the normal return current on the neutral (grounded) conductor of the system, where it belongs, when returning to its source. These principles are reinforced by requirements in 110.7, 250.24(A)(5) and 250.30(A). Code rules and requirements for the grounded conductors are covered in depth in chapter three of this text.

Grounded (Grounding)

Grounding and Equipment Grounding Conductor

As used in Article 250 and other articles, grounding is a process that is ongoing. The conductor to look at is the equipment grounding conductor. The action is ongoing through every electrical enclosure it is connected to all the way to the last outlet on the branch circuit. The equipment grounding conductor provides a low-impedance path for fault-current if a ground fault should occur in the system and also connects all metal enclosures to the grounding point of the service or system.

So it is important that the equipment grounding conductor make a complete and reliable circuit back to the source. At the service is where the grounded (neutral) conductor and the equipment grounding conductor(s) are required to be connected together through a main bonding jumper. In a separately derived system, this connection is made with a system bonding jumper installed between the grounded conductor and the equipment grounding conductor(s). The main bonding jumper and the system bonding jumper complete the ground fault-current circuit back to the source. The rules and requirements for equipment grounding conductors are covered in depth in chapter nine.

Bonded (Bonding)

Grounding as Compared to Bonding

Defined in Article 100, both of these functions are essential for the complete safety anticipated by the rules in Article 250 (see figure 1.10).

Ground. “The earth.”

Grounded (Grounding). “Connected (connecting) to ground or to a conductive body that extends the ground connection” (see figure 1.8).

Bonded (Bonding). “Con-
nected to establish electrical continuity and conductivity” (see figure 1.9).

These are two separate functions with two different purposes. It is important to establish a clear understanding of the grounding (earthing) circuit and its purpose as compared to the equipment grounding conductors and bonding jumpers or connections.

Section 250.4 has been broken down into grounded systems and ungrounded systems. Requirements in this section include descriptive performance requirements and establish the purposes served by each of these actions. The title of Article 250 is “Grounding and Bonding.” The article contains an equally strong emphasis on bonding requirements. Chapter eight presents detailed information on these bonding requirements (see sidebar for important information about grounding and bonding terminology revisions started with the 2008 NEC and with additional revisions in the 2011 and 2014 NEC).

The National Electrical Code Trend

The NEC in recent cycles has been revised to reduce the allowance of using the grounded conductor for grounding equipment downstream from the main bonding jumper in a service, or downstream from the system bonding jumper at a separately derived system. As stated earlier, the reasons are elementary. Current, be it normal current or fault current, will take all the paths available to it to try to return to its source. If the grounded conductor (neutral) and equipment grounding conductors are connected at points downstream of the service or separately derived system, such as at subpanels, multiple paths will be available on which the current will try to return to the source. This can lead to normal neutral current on water piping systems, conduit, wire-type equipment grounding conductors, and any other electrically conductive paths, and all these extra paths can compromise electrical safety and even proper overcurrent device operation in ground-fault conditions.

In recent editions of the NEC (1996), electric range and dryer circuits were required to include an equipment grounding conductor in addition to an insulated grounded conductor. Existing range and dryer circuits are allowed to continue the use of the grounded conductor, or neutral, to ground the boxes at the outlet and the frames of the equipment. New installations, however, are required to maintain isolation (insulation) between the grounded conductor and the equipment grounding conductor.

The rules covering the use of the grounded conductor for equipment grounding purposes at a second building or structure are provided in Section 250.32. Section 250.32(B) requires an equipment grounding conductor to be installed with the feeder supplying the second building or structure; separation between the grounded (neutral) conductors is to be maintained. There is an allowance in 250.32(B) Exception, for existing installations only, to utilize the grounded conductor of the feeder for grounding equipment under three specific and very restrictive conditions. First, an equipment grounding conductor is not included with any feeders and/or branch circuits supplying the building or structure. Second, there are no continuous metal-
Index

A
Agricultural buildings 286, 328
Alternate energy and distributed generations systems 356
Alternating-current 13, 24
Amateur transmission and receiving stations 398
ANSI/ISA RP 12.06.01-2003, Recommended Practice for Wiring Methods for Hazardous (Classified) Locations Instrumentation Part 1: Intrinsic Safety. 389
Arc-Fault Circuit Interrupters (AFCI) 302
Article 250 11, 15, 21
Article 645 369
Auxiliary grounding electrode 197

B
Bolted connections 246
Bolted faults 55
Bonded, Bonding 18, 161, 352, 391
 Bonding electrodes of different systems 395
 Differences of potential 395
 Electrical equipment 29
 Electrically conductive materials 30
 Electrode conductor installations 396, 402
 Equipotential bonding 440
 Equipotential Bonding 343
 Grounding electrodes 283
 Hazardous (Classified) Locations 317
 Method 104
 Multiple Raceway Systems 167
 Multiple service disconnecting means 108
 Over 250 Volts 164
 Patient care areas 337
 Purpose of 28
 Spa or hot tub installed indoors 349
 Structural steel 174
 Structural steel and water piping 267
 Bonding jumper, system 210, 258
 Main bonding jumper 95
 Supply side bonding jumper 95, 102
 Broadband grounding systems 377
 Burns and other injuries 27
 Busbars 152

C
Cabinets, cutout boxes and wireways 166
Cables 189
 Branch-Circuit Cable 191
 Nonmetallic-Sheathed Cable 190
 Service-Entrance Cable 191
 Type AC Cable 189
 Type MC Cable 189
 Capacitance 13
 Capacitive reactance 13
 Circuits 14
 Control circuit 388
 Design 229
 Direct-current circuits 199
 Equipment grounding (safety) circuit 15, 16
 Grounded circuit conductor 202
 Impedance 36
 Signaling circuits 389
 Circuits
 Not to be grounded 48
 Clean surfaces 148
 Community antenna television and radio distribution (CATV) systems 398
 Concrete-encased electrode(s) 467
 Concrete-encased electrodes 118, 119
 Ground ring 120
 Installation 123
 Size of bonding jumper 121
 Conductor(s) 62, 64, 211, 412, 433
 4 AWG and larger 63
 6 AWG or smaller 63
 Bonding conductor or jumper 391
 Down conductors 435
 Enclosures 187
 Flexible cords 63
 Roof conductors 434
 Size of grounded conductor 281
 Ungrounded service-entrance conductors 413
 Withstand rating 246
 Conduit 243
 Conduit fittings 162
 Equipment grounding means 242
 Flexible conduits 245, 320
 Underground 200
 Cord-connected equipment 340
 Counter-electromotive force (EMF) 13
 Current 15, 20
 Objectionable Currents 131
 Current (Amperes) 12

D
Delta bank with a zigzag grounding transformer 68
Delta-connected systems 70
Designing electrical systems 32
Direct current (dc) 24
Disconnecting means 284
Earthing 13
Electrical shock 16, 25, 26
Electrical systems designed 32
Electric signs 213, 350, 351
Electrolytic grounding systems 125
Elevators and cranes 213
Equipment bonding jumpers 167, 168
Installation 170
Equipment ground-fault protective device (EGFPD) 300
Equipment grounding conductor 18, 183, 189, 210, 246, 269, 279, 419
Circuit conductors 198
Flexible Cord and Fixture Wire 196
High frequency effects 379
Motor Circuits 195
Parallel 196
Size 191, 193
Equipotential plane 330, 377

Fault-Current
Study Analysis 232
Test Procedure 230
Ferrous metal raceways 153
Fuel cell systems 362

Garages, theaters, and motion picture studios 213
Ground 18
Ground-detection indicator systems 50
Grounded conductor 17, 19, 239, 391
Grounded (Grounding) 18, 23, 54, 64, 184, 210
AC systems of 50 to 1000 volts 45
Alternating-current systems of over 1000 volts 45
Building steel 199
Communications cable 395
Cord- and plug-connected equipment 214
Data processing system 375
Electrical equipment 29, 373
Electrodes 392, 396
Equipment 328
Fixed equipment 212
Foundation of 13
Hazardous (Classified) Locations 317
Less than 50-volt systems 44
Multipoint grounding 379
Outdoor industrial substations 411
Panelboard 338, 342
Patient care areas 332, 336

Portable or Mobile Equipment 415
Purpose of 28
Single-point grounding 379
Solid (solidly) grounded 13, 413
Special purpose receptacle 339
Swimming pool, outdoor spa, and hot tub equipment 340
Systems Rated 15,000 Volts or More 410
Systems Rated 2400 Volts to 13,800 Volts 410
Ground fault 21, 35, 228, 236, 291, 292
Equipment Ground-Fault
Protective Device (EGFPD) 300
Ground-fault circuit interrupters 16, 292, 297
Ground-Fault Conductor 412
Ground-Fault Current Path 21, 30, 42
Ground-Fault Protection for Equipment (GFPE) 302
Protection of Equipment 271, 292, 305
Residual-Type Ground-Fault System 309
Zero-Sequence Ground-Fault Sensing-Type System 307

Ground-Fault Protection for Equipment (GFPE) 302
Grounding electrode conductor 139, 277, 282
Connections 146
Description 116
Design considerations 154
Direct current systems 155
Installation 150
Magnetic Field 152
Material 150
Maximum current 140
Securing and protection from physical damage 151
Sizing 141, 142, 144
Splicing 151
Grounding electrodes 107, 113, 278, 437, 468
Grounding electrode system 41, 43, 114, 129
Common 124
Earth return prohibited 126
Enhanced 125
Methods 65
Monitoring 128
Resistance 127
Resistance Testing 130
Guarded 22

Hamonic currents 382
Hazardous (Classified) Locations 317
Health care facilities 331
High-impedance grounded systems 47, 86
Human body 26
Index

Humidity 321

I

Impedance 12, 14, 24, 154
 Circuit 36
Inductance 13
Information technology (IT) equipment 374
Insulated 22
Intersystem grounding and bonding 390, 391
 Mobile Homes 394
 Termination 390
Intrinsically safe systems and circuits 389
 Isolated 22

J

Junction boxes and enclosures 348

L

Lightning protection 133, 327, 402, 429
 Fundamentals 424
 Grounding network 436
 Lightning discharge 426
 Mesh Method 431
 Protection Angle Method 430
 Quality Control programs 443
 Rolling Sphere Method 430
 Strike Termination Devices 432
 Strike termination network 429
 Low-impedance ground-fault return path 25
 Low-impedance path 15
 Low-voltage circuits and systems 387
 Luminaires 213, 348
 Wet-niche 346

M

Main bonding jumper 95
 Different conductor material 99
 Single service disconnect or enclosure 99
 Size 97, 100
Medium-voltage systems 409
Metal Frame 117
Metallic piping systems 173, 326
 Multiple occupancy building 172
Metal raceway or cable armor 200, 221
 Nonmetallic Boxes 168
Metal well casings 214
Metric conversion 476
Mobile homes and recreational vehicles 285
Motor control circuits 388
Motor frames 213
Motor-operated water pumps 214
Motor(s) 341
Multiple services 86

N

National Electrical
Grounding
Research Project 468
National Electrical Grounding Research Project 12
NEC Technical Correlating Committee 17
Network-powered broadband communications systems 401
Neutral 62, 67
 Derived Grounded (Neutral) Conductor 260
 Impedance Grounded Systems 414
 Line side of service 103
 Multigrounded systems 414
 Single-Point Neutral Grounded Systems 413
 Solidly Grounded 413
 Strap-type system 305
NFPA 70E-2012 Standard for Electrical Safety in the Workplace 27
NFPA 780 428
Nonelectric equipment 214
Nonmetallic raceway 199

O

Ohm’s Law 14
Outlet, device, pull and junction boxes 217
Overcurrent 227
Overcurrent device 15, 292
Overload 228, 292

P

Panelboards 218, 342
Path 13, 31, 325
 Fault-current 233
Photovoltaic Systems 358
Pipe organs 213
Piping systems 170
 Metal underground water pipe 117
 Metal water piping 171
Premises-powered broadband communications systems 403

R

Radio and TV Antennas 395
Ranges and dryers 216
Receptacles 219, 299
Reducing washers 166
Remote-control, signaling, and fire alarm circuits 213
Remote metering 106
Soares Book on Grounding and Bonding

Resistance 13, 14, 24, 325, 468
Insulation 33

S
Section 250.4 19
Selective coordination 237
Separately derived power systems 46, 255, 256, 283, 342, 357, 371
Generator-Type 269
Grounding electrode 262
Grounding electrode conductor 264
Ungrounded 267
Series combination ratings 236
Service raceways and enclosures 210
Services 77, 89
 Dwelling unit services and feeders 83
 Grounded service conductor 82
 Parallel service conductors 84
 Service grounding connection 81
 Underground parallel service conductors 85
Shielded cables 418, 419
Short circuit 34, 227, 234, 292
Signal reference grid 377
Skid-mounted equipment 214
Soares Book on Grounding and Bonding 496
Solder connections 215
Static electricity 322
 Combustible Dust 327
 Ignition hazards 324
 Static discharge and separation 322
 Static protection 320
Stray (Tingle) Voltage 329
Stress in the secondary circuit 354
Supplemental electrode 120
Surge arresters 416
Surge protection 380, 441
Switchgear and switchboard frames and structures 213
System bonding jumper 257, 258

T
Three-Phase Services 242
Transformer-type separately derived system 256

U
UL General Information for Electrical Equipment Directory (UL White Book) 298
Ungrounded electrical system 25, 47, 49, 52, 67, 88, 185, 413

V
Voltage (Electromotive Force) 12

W
Watt's Wheel 14
Well casings 120
Wind systems 363

Z
Zero-Sequence Ground-Fault Sensing-Type System 307