BECOMING
The Electrical Inspector

International Association of Electrical Inspectors
BECOMING

The Electrical Inspector
BECOMING
The Electrical Inspector

International Association of Electrical Inspectors
Richardson, Texas
Preface

The most frequent question asked of IAEI is, “How does one become an electrical inspector?” The answer can vary depending on the jurisdictions, companies, and even job titles. The specialized electrical inspector’s job has evolved in many locations to include inspections outside of residential to include commercial, industrial, and hazardous locations. The inspector may also be asked to perform building or mechanical inspections in addition to electrical. The questions of what an inspector does, and how to become an inspector need to be addressed more than ever.

In 1969, Arthur H. Welkin wrote The Electrical Inspector for IAEI in a 115-page book as a base of operations for the electrical inspector, a guide for individuals looking to get into the field, and an inside view of the complexity of inspections. His book covered highlights and history of the National Electrical Code, electrical inspection as a career, inspector education, and much more. He quoted advice from electrical inspectors of that time to current and future inspectors.

The goal of Becoming the Electrical Inspector is to expand Welkin’s ideas into a more comprehensive look at all aspects of the modern inspector’s job. We used the original book as a framework for integrating the requirements for modern inspectors. Here are a few examples:

- Who are electrical inspectors?
- What do they do? What are their most common responsibilities?
- Where do they work?
- When is the inspector involved and when must they call in outside reinforcements, as for field evaluations?
- Why are inspectors needed?
- How does one become an inspector or find a job as an inspector?

This book began in January 2015 with an exhaustive study into electrical training requirements throughout the United States. Starting in July 2015, another research project examined electrical inspectors in jurisdictions throughout the United States and Canada. The results of this project were published in the July/August 2016 issue of IAEI Magazine. In 2016, electrical inspectors were surveyed about their job duties, how they became inspectors, and advice for future inspectors.

We hope this book helps to broaden the foundation of those performing electrical inspections and help others within the electrical industry see the importance of the critical role of electrical inspectors.

— Laura L. Hildreth
We are living in the most unprecedented era of the world’s history, a conglomeration of many great ages all compressed in one.

During the past few decades, especially the years following the middle of the century, man has made great strides in the exploration of the physical world about him. More recently is this true in the discoveries of the atomic world and the wonders of space. Electricity is deeply involved in all of this.

Breathtaking as this all proves to be, developments in that phase of the electrical industry where we as electrical inspectors function have reached a point beyond the wildest stretch of the imagination. We, who have a niche to fill in this fantastic operation, are required to be well informed at all times. To remain static today is fatal. Yesterday the situation was not quite so acute, and one might come through without the full complement of data that is a must today.

It is interesting to note the frame of mind of the layman a century ago. The idea of future discoveries, especially in science was a subject of little interest. For example, let’s take a trip to the U.S. Patent Office via an excerpt from a story that appeared in *Scientific American*, dated October 16, 1915, all of which makes interesting reading today.

“Someone poring over the files in the U.S. Patent Office at Washington the other day found a letter written in 1833 that illustrates the limitations of the human imaginations. It was from an old employee of the Patent Office offering his resignation to the head of the Department. His reason was that everything inventible had been invented, that the Patent Office would soon be discontinued, and there would be no further need of his services or the services of his fellow clerks. He therefore decided to leave before the blow fell.”

Remember, this fellow traveled by stagecoach. He read at night by candlelight. He never saw a house lit with illuminating gas, much less electricity. In fact, he knew practically nothing about our modern way of life. Even now with all our modern development, we have only scratched the surface, so to speak.

Since electricity is part and parcel of most of the scientific achievements of this century, it is exciting to note that the electrical inspector has at least a small part to play in the overall picture within their area of responsibility. Within a few short years, fertile brains have discovered and developed to perfection, many things that have changed our way of life.

Some time ago I had the unusual privilege of personally interviewing Nobel Prize winner, Harold C. Urey (the discoverer of Heavy Water)
who had played a major part in the experiments that led to the perfection of the Atomic Bomb. Dr. Urey, besides being one of the world’s most prominent physicists is an astronomer as well. I was greatly interested in a statement he made during our one hour and fifteen-minute interview. He put his finger to his head and said, “What never ceases to impress me is the vast knowledge of things about us that can be stored within a tiny space such as this.”

Yes, we are indeed living in an age of marvels and the wonders of science, and it goes without saying that our field, electricity, is in the forefront. We, of course, deal with but a small segment of it in our sphere of activity.

Our coverage concerning this field does not enter the technical realm. We shall consider briefly some of the beginning factors relating to various electrical developments leading to the codes, electrical inspection, together with procedures and relationships within the industry. We shall also have something to say regarding the objectives of the electrical inspector and his organization, the International Association of Electrical Inspectors, together with related subjects. We shall consider the reason for those aims and programs with special emphasis on public relations.

— Arthur H. Welkin, The Electrical Inspector, IAEI, 1969

Arthur Welkin was first employed with the Edmunds Electrical Construction Company and then attended the School of Engineering in Milwaukee, Wisconsin before accepting the position of electrical inspector with the Indiana Rating Bureau. He also worked as chief electrical inspector for the city of Fort Wayne, Indiana, for thirty years. A member of IAEI since 1921, he served as chairman of the IAEI Indiana Chapter, as president of the IAEI Western Section, and as chairman of the IAEI International Public Relation Committee. He also taught evening electrical code classes throughout the various high schools of Fort Wayne, Indiana, and served on the Board of Trustees of Andrews University, in Berrien Springs, Michigan, for many years.
Ever wonder about the safety of an electrical system? With electrical wiring often buried within the hollow, inaccessible construction of a structure, it is often difficult to easily detect safety issues with the electrical wiring. The question arises... what makes our electrical systems safe? In short, they are safe because qualified persons perform electrical work in accordance with the installation code, and inspectors verify that minimum requirements are met to ensure that the installations are virtually free of electrical hazards. Many electrical inspectors evolved from being electrical workers to becoming qualified electrical inspectors.

The authority having jurisdiction (AHJ) is a governmental or private inspection organization or individual authorized by local legislation to audit electrical installations in order to validate that such installations performed within the area of its jurisdictional authority are, indeed, safe. When the installation codes are legally adopted in each jurisdiction (i.e., within the state, county, province, municipality, etc.), provisions of these codes establish the inspection department as the authority for the interpretation and enforcement of adopted codes. These codes, such as the National Electrical Code or Canadian Electrical Code, are essential components of the electrical safety systems, and each AHJ is uniquely responsible for administration/enforcement of the legally adopted installation code.

Keeping abreast of the latest listed/approved electrical products and installation requirements in the field helps inspectors in preventing the loss of life, health, and property due to electrical accidents, shock, and fire hazards. Responsibilities of local authorities have evolved to include residential, commercial, institutional, and industrial installations; inspections of various types may occur during one working day. With limited budgets and shrinking workforces within the trades, many jurisdictional AHJs are also being tasked with becoming “multi-hat” inspectors—or the more commonly used “combination inspector.” These individuals are tasked not only with electrical inspections, but with inspecting building, plumbing, and mechanical installations within their municipality.
Why Inspections Matter

Today’s electrical safety practices developed from years of experience and knowledge gained by unfortunate accidents and fires. An electrical safety system is critical in helping inspectors enforce these developed practices embedded in provisions of the legally adopted codes. A robust installation code that applies to installation of electrical products, designed, constructed and certified to the products safety standards, which are correlated with the installation code and a measurable, transparent and reliable system of electrical inspections are three crucial components to an effective safety system (Pauley, November 2007). When any of these elements are weakened, the electrical safety system can fail and expose workers and the public to electrical shock and fire hazards. Additional elements of an effective electrical safety system include: nationally recognized testing laboratories, field evaluation bodies, manufacturers, qualified workers, and thorough inspection of installations, equipment, and systems (Johnston, November 2006).

There are significant benefits of a quality inspection program, especially the peace of mind by knowing that an inspected electrical installation is essentially free from hazards. While electrical code enforcement might not be viewed as an economic value or advance, it can result in significant value for consumers. The Insurance Services Organization (ISO) awards a rating to inspection departments that provide quality building safety inspection and plan review services that can result in lower insurance rates (Johnston, November 2006). Examining the ISO ratings within an area is a good indication of whether public safety is in good condition or needs improvement. Inspectors are represented on each NEC code-making panel, offering another intangible benefit by contributing to the electrical code development process. This representation helps to assure that safety rules updated in each new edition are practical, understandable and enforceable for code enforcement personnel.

Inspections of installed work also provide an opportunity to identify risks of potential shock hazards, electrocution, fire and other hazards. It is a common practice for local jurisdictions to adopt a code as the minimum and then amend or modify the international and national building standards with local requirements as necessary. These local amendments are usually more restrictive than the adopted code and are often unique to the region or area. Examples of common amendments are those when dealing with harsh soil conditions and the impact that the soil may have on electrical equipment in contact with the earth (Johnston, January 2005).

Responsibilities of the Inspector

Article 90 of the National Electrical Code establishes the responsibility for interpretations and approvals for the authority having jurisdiction (AHJ) when the NEC is adopted into law within a jurisdiction. Article 100 identifies the AHJ as the entity responsible for enforcing the requirements of an adopted code or standard within its jurisdiction, be it a state, local, or other regional department or institution. Electrical inspectors have the responsibility of see-
ing that electrical installations and equipment are reasonably safe in the homes, schools, offices and industries under their jurisdiction.

Chief Electrical Inspector
The chief electrical inspector has both administrative and technical responsibilities. It rests with chief electrical inspectors to prepare logical and reasonable safety standards for the area (city, county or state) that they are accountable for, to justify them in answer to challenges, and to interpret them for their reasonable and proper application. The following is a list of some of the responsibilities of the chief electrical inspector:

1. The chief electrical inspector directs a team of inspectors, including scheduling, coordinating, assigning, reviewing and overseeing the completion of a variety of work as necessary.

2. Prepares and analyzes and reviews reports, expense accounts, itineraries, procedures, and activities of the electrical inspector, and has the authority to approve, reject, or require changes as necessary.

3. Operates as a consultative service for electrical contractors, electrical engineers, representatives from labor and management, and the general public in his area.

4. Responsible for making consensus Code interpretation for the entire inspection department staff. [Example: how far inside a building is “nearest the point of entrance” for a service disconnecting means described at NEC 230.71(A)(1)?].

5. Reviews plans and specifications submitted for approval and comment and advice.

6. Develops and maintains an in-service training program for staff.

7. Complies with local electrical code requirements and examines installation for the use of proper equipment and materials; conducts tests and issues certificates of inspection and approval or correction notices.

8. Inspects electrical equipment that is not listed or labeled by a nationally recognized testing laboratory or field evaluation body, and if noted, the inspector requests a field evaluation, issues a provisional approval permit, or requires modifications to ensure compliance with the applicable codes.

9. Conducts computer record plan checks and performs research of applicable codes; checks for appropriate electrical licenses and permits; approves code-compliant plans and issues permits and advises engineers and contractors on how to meet electrical code requirements.

10. Participates in research programs for revision or adoption of local codes or ordinances.

Electrical Inspector
Electrical inspectors are responsible to report to their chief electrical inspector for the quality and quantity of their work, including the enforcement of the electrical code within the territory. They must have a comprehensive knowledge of the materials and equipment used in an electrical installation. They must have an exact knowledge of the electrical code under which they operate and must support any interpretations of the chief electrical inspector. The following is a list of some of the responsibilities of electrical inspectors:

1. Receives and schedules inspection requests, effectively plans his work, and then communicates with contractors and/or homeowners regarding questions relating to scheduling, equipment usage, and/or code violations.
Advises electricians, contractors, homeowners and others regarding electrical regulation and installation of electrical products.

Checks commercial, industrial, institutional, and residential electrical installations for compliance with state and local electrical codes and laws. Must be able, when so assigned, to make thorough and competent electrical inspections, surveys, investigations, and prepare written records. Inspections cover the use of proper materials; compliance with electrical code requirements; testing of equipment; and issuance of certificates of inspection and approval or correction notices.

Handles the field-end issuance and follow-up, as the occasion justifies, on any requirements for correction to comply with the electrical ordinance.

Keeps abreast of the latest developments in his specialty field of work.

Reviews plans, blueprints, site layouts and specifications as needed.

Assists in preparing and reviewing the electrical ordinance.

Maintains properly all equipment assigned to him.

Keeps the chief electrical inspector informed as to the status of his inspections, re-inspections, investigations and other activities as required.

Qualifications for becoming an inspector can vary significantly (see chapter 2), but certain characteristics shared by inspectors are very important for doing a good job (see diagram 2). What are the guidelines for determining if an inspector is considered qualified? Technical qualifications can vary per jurisdiction as some may require a minimum of journeyman or master electrician licenses, while others may require certain years of field experience or other formal degrees such as electrical engineering.

Salary Information

Per the U.S. Department of Labor’s Occupational Employment Statistics report, the 2015 mean annual salary for electricians was $51,880 (Bureau of Labor, 42-2111, May 2015). In comparison, the national average salary for an electrical inspector is $60,030. Entry-level electrical inspectors, in the first five years on the job, earn an average of $51,000. Mid-career individuals with five to ten years’ worth of experience average a net salary of $58,000 annually. More experienced electrical inspectors with ten to twenty years on the job see a median salary of $62,000, and individuals with more than twenty years of experience average a higher median salary of $66,000. (Payscale.com, November 2016).

Following a similar trend with electrician jobs, the salaries can also vary depending upon location and type of jurisdiction. The highest wages for inspectors are in the following locales: Alaska’s mean wage for inspector’s average out at $82,510, followed by California at $81,010, the District of Columbia at $78,900, Nevada at $72,090, and Connecticut at $70,080. The states with the lowest mean rates for inspectors are Arkansas at $46,350, Mississippi at $45,220, South Dakota at $45,220, Vermont at $44,430, and West Virginia at $43,710.

Construction and Building Inspectors, of which electrical inspectors fall into said group, are also reported as having differing salaries...
Most common salary for electrical inspectors in 2015 is: $60,030

Most common salary range for electrical inspectors in 2015 is: $43,710 – $82,510

Average Salary by State

<table>
<thead>
<tr>
<th>Salary Range</th>
<th>States</th>
</tr>
</thead>
<tbody>
<tr>
<td>$81,030 - $82,510</td>
<td>San Francisco, CA Metropolitan Area, Anchorage, AK Area, Los Angeles, CA Metropolitan Area, Las Vegas, NV Metropolitan Area, Hartford, CT Metropolitan Area</td>
</tr>
<tr>
<td>$70,880 - $78,900</td>
<td></td>
</tr>
<tr>
<td>$61,960 - $69,260</td>
<td></td>
</tr>
<tr>
<td>$50,010 - $57,310</td>
<td></td>
</tr>
<tr>
<td>$43,710 - $49,280</td>
<td></td>
</tr>
</tbody>
</table>

Higher Averages for Construction Inspectors

<table>
<thead>
<tr>
<th>Location</th>
<th>Salary (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Francisco, CA Metropolitan Area</td>
<td>$100,240</td>
</tr>
<tr>
<td>Anchorage, AK Area</td>
<td>$84,280</td>
</tr>
<tr>
<td>Los Angeles, CA Metropolitan Area</td>
<td>$78,390</td>
</tr>
<tr>
<td>Las Vegas, NV Metropolitan Area</td>
<td>$74,350</td>
</tr>
<tr>
<td>Hartford, CT Metropolitan Area</td>
<td>$73,580</td>
</tr>
</tbody>
</table>

Average Salaries for Construction Inspectors

<table>
<thead>
<tr>
<th>Location</th>
<th>Salary (2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami, FL Metropolitan Area</td>
<td>$62,230</td>
</tr>
<tr>
<td>Taunton-Middleborough, Norton, MA</td>
<td>$62,150</td>
</tr>
<tr>
<td>Rochester, MN Area</td>
<td>$60,640</td>
</tr>
<tr>
<td>Silver Spring, Frederick, MD Area</td>
<td>$59,000</td>
</tr>
<tr>
<td>Phoenix, Mesa, Scottsdale, AZ Area</td>
<td>$57,440</td>
</tr>
</tbody>
</table>

http://www.bls.gov/oes/current/oes474011.htm
depending upon the hiring jurisdictions. Local governments report an average annual salary of $59,070; state governments have a mean of $55,100, federal branches at $70,820; management, scientific, and technical consulting services at $57,810, architectural, and engineering and related services at $59,080 (Bureau of Labor, 47-4011, May 2015). Local jurisdictions such as the San Francisco-Redwood City-South San Francisco, CA area have reported an annual mean wage as high as $100,240 but as low as $23,400 in one Michigan municipality.

Types of Electrical Inspectors
The responsibilities of local authorities have also evolved to include more than just residential inspections. Many are tasked with inspecting a residential, commercial, institutional or industrial installation. With limited budgets and shrinking workforces, many AHJs are also tasked with moving towards “multi-hat” inspectors. These “multi-hat” individuals are tasked not only with electrical inspections, but with inspecting building, plumbing, and mechanical installations.

- **Single-hat (specialized) inspectors** perform only inspections on a single trade and are not potentially responsible for performing inspections outside their fields.

- **Multi-hat (combination) inspectors** perform inspections for more than one trade such as building, plumbing, mechanical, and electrical or other forms of inspections.

The IAEI Electrical Inspector study launched in September 2015 to build a national consensus of in-house electrical inspectors hired by a local or state jurisdiction. In addition to the email survey, relevant data was obtained from various sources such as jurisdictional websites for information pertaining to electrical permitting and inspection. The report found a total of 3,938 ju-

Regional Breakdown of Inspector Type

As with salaries, the jurisdictions that use specialized inspectors or combination inspectors can also vary by regions. For example, South Central area had a higher percentage of multi-hats than Middle Atlantic, which is an area known for using inspection agencies.
risdictions with a total of 8,401 in-house electrical inspectors. Of these AHJs, 32% are single-hat electrical inspectors and 68% are multi-hat. All of these inspectors are found most frequently in Building Departments (29%) or within those called Inspection Services or Building Inspection (22%). The average department has two electrical inspectors who perform, on average, 80 inspections per week.

The job title of electrical inspectors varies considerably not only throughout local jurisdictions, but also within different regions of the country. An Inspector of Wires in Massachusetts might perform the same job duties as a State Electrical Inspector in Colorado. Titles with Building Inspector as the first subset are the most common at 49%. Grouped classifications of Electrical Inspectors titles — such as Electrical Inspectors or Electrical Subcode Officials — come in next at 31%. Variations of Combination Inspectors make up 7%, and Plans Reviewers/Examiners make up a total of 2%. The rest include titles such as Engineers, Electricians, and Fire Marshalls who also perform electrical inspections.

Third-Party Inspectors
In some jurisdictions, third-party agencies are used in place of having an in-house inspector. In some smaller towns, the municipality will contract out with a third party such as Bureau Veritas or Middle Department Inspection Agency. The usage of third-party agencies is most common in the Mid-Atlantic region of the United States. The majority of respondents in the original email survey (90%) do not use a third-party inspection agency. Some jurisdictions (6%) will use a third-party inspection agency when an in-house inspector is either not available or when they are short-handed.

There are also times when the state inspectors (3%) will step in and help with some of the local inspections. Common third-party inspection agencies that they noted using (2%) include
United States Municipality-Based Inspectors

Most jurisdictions use in-house inspectors to perform electrical inspections. Some states and smaller jurisdictions use third-party inspection agencies or state electrical inspectors when an in-house inspector is either not available or when the AHJ is short-handed. American Inspection Agency, Middle Atlantic Inspections, or Commonwealth Electrical Inspection Services. However, most jurisdictions in Pennsylvania and Kentucky, for example, use third-party inspection agencies to perform their electrical inspections while maintaining the electrical permitting in-house.

State Electrical Inspectors

State-wide electrical inspectors are utilized in a variety of circumstances. In some states, such as Minnesota, the majority of electrical installations within the state (with the exception of a few municipalities) are required to be inspected by a state electrical inspector. Other states such as Alabama use state electrical inspectors for state-owned buildings only. State electrical inspectors can also be called out to provide local inspections if called upon by a local AHJ, such as in Arkansas. (Hildreth, 2016).

Summary

It is difficult to describe the average electrical AHJ as their titles, responsibilities, certifications, and coverage areas vary so greatly. The state board governing licensures may have some additional information with regards to the electrical safety codes in your area and whether they use state or local inspectors. It is also important to contact the local building department to find out who is performing electrical inspections, what department they are in, and so forth.
12 WINNING TRAITS OF A GOOD INSPECTOR

1. Competency
Have an excellent knowledge of code rules and fundamental understanding of electricity and electrical systems.

2. Ability to Listen
Have an open mind when discussing specific needs or positions and digest and evaluate the situation without bias to better understand a situation.

3. Fairness in Applying the Code
Ensure that rules are interpreted and applied uniformly to all involved.

4. Good judgement
Consider all aspects of a situation where judgements do not fall under established Code rules.

5. Thirst for Knowledge
Remain diligent about staying proficient and working to gain acceptable levels of expertise within the field.

6. Ability to Work with People
Learn to effectively communicate with people to help prevent escalation of hostile confrontations.

7. Commitment
Answer electrical code questions, teach classes, serve on panels, and give presentations to help improve electrical safety.

8. Positive Attitude
Approach the responsibility of enforcing safety rules with an image of verifying compliance versus trying to find something wrong.

9. Consistency
Create basic guidelines within the jurisdiction to create consistency with interpreting and applying code rules.

10. Common Sense Approach
Understand both the purpose and the intent of the Code to provide a good level of safety.

11. Dependability
Remain consistent and reliable when visiting site locations to ensure high level of trust.

12. Responsible Use of Authority
Act with high levels of integrity when enforcing rules and regulations adopted by local jurisdiction.
From the Mouths of the Inspectors

“Phone calls, covering counter questions, approximately 10-12 inspections throughout SF of various scopes (i.e., large and small commercial, new construction, remodel, large and small residential, both single family and multi-unit, of varying age of original construction... Some from the late 1800s). Then data entry, phone calls, and emails.” Osha M. Ashworth, Electrical Inspector, City/County of San Francisco

“Inspection requests are sorted, routed, and entered in laptop. Phone calls are received and returned for 1 to 1-1/2 hours, questions answered. Field inspections begin afterward, beginning in a circular route, generally with the farthest, working back to home office. Travel times vary with each area, ranging from 5 minutes to an hour or more. Statewide daily average number of inspections per inspector is 7. Miles/inspections are inversely proportional.” Grant Hammett, Supervisor Electrical Inspector, State of Colorado

“My typical work day as an electrical inspector consists of a normal workday which, for me, was 6:30 a.m.–3 p.m. My day started in the office where I received the day’s electrical inspection requests. I organized my inspection route to complete as many inspections as I could and be as efficient as possible. Before leaving the office, I spoke to most of the contractors who had requested an inspection for that day. I would give them a two-hour appointment window of when they could expect me to arrive. I would complete the day’s inspections and enter the results in our project tracking system. This was used to document the day’s inspection results. The completed inspections would receive a Pass Inspection. For the failed inspections, I am required to write a correction notice which would describe the violations and direct the contractor to make the required corrections and re-schedule the inspection.” Chad R. Gustine, Chief Electrical Inspector, City of San Diego, California

“Typical workday begins by organizing the workload, making appointments as needed, routing the inspections for efficiency of time and to meet customer needs. Drive to job sites, evaluate the safety hazards on each site, and taking appropriate actions such as choosing proper PPE. Then inspect the electrical work for code violations. Document corrections with appropriate code references. The following is necessary in order to do a good job: Good communication skills, exceptional code knowledge, ability to deal with difficult customers, good organizational skills.” Tim J. Hingtgen, Electrical Inspection and Review Supervisor, City of Bellevue, Washington
Appendix D

Bibliography

ESFI, “ESFI’s Counterfeit Electrical Product Survey Results,” IAEI Magazine, July/August 2015.

The Electrical Inspector

Ever wonder about the safety of an electrical system? With electrical wiring often buried within the hollow, inaccessible construction of a structure, it is often difficult to easily detect issues with the electrical wiring. The question arises…what makes our electrical systems safe? In short, they are safe because qualified persons install work to achieve code compliance, and inspectors verify that minimum requirements are met to ensure that the installations are virtually free of electrical hazards. Many qualified electrical inspectors evolved from being qualified electrical workers to becoming qualified electrical inspectors. This book examines the evolution of this becoming.

- What do inspectors do?
- Who are they?
- Where do they come from (career) and where they do work (location)?
- When do they reference other agencies or the public at large?
- How do they interact with the electrical industry at large?

All electrical inspectors who are conscious of their responsibility to the community will exercise every effort on appropriate occasions to inform the people about electrical safety. The way in which this is done could spell the difference between “Home Sweet Home” and a “Pile of Ashes,” or even “Between Life and Death” depending entirely upon the circumstances.

“From the standpoint of his asset to the community, considering his responsibility in the area of Code compliance, the electrical inspector literally becomes a life saver and his office a life-saving station. It is said that he is the unsung hero in his community insofar as his field is concerned. Think for a moment, if you please, of the chaotic conditions which would prevail in the wiring systems of our cities, were it not for the electrical code and the enforcer of that code. Another interesting point of the electrical inspection field is the fact that the electrical inspector is required to be such a versatile chap, and this has a way of making his job interesting. For example, he is bound to be something of a physiologist, a teacher, policeman, judge, detective, counselor, and so on. Hence, a bit of research along these lines often proves a good investment.” — Arthur H. Welkin, The Electrical Inspector, 1969.